Vageesh Kumar Saxena
2025
ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval
Antoine Louis
|
Vageesh Kumar Saxena
|
Gijs van Dijck
|
Gerasimos Spanakis
Proceedings of the 31st International Conference on Computational Linguistics
State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages.
MATCHED: Multimodal Authorship-Attribution To Combat Human Trafficking in Escort-Advertisement Data
Vageesh Kumar Saxena
|
Benjamin Ashpole
|
Gijs Van Dijck
|
Gerasimos Spanakis
Findings of the Association for Computational Linguistics: ACL 2025
Human trafficking (HT) remains a critical issue, with traffickers increasingly leveraging online escort advertisements to advertise victims anonymously. Existing detection methods, including text-based Authorship Attribution (AA), overlook the multimodal nature of these ads, which combine text and images. To bridge this gap, we introduce MATCHED, a multimodal AA dataset comprising 27,619 unique text descriptions and 55,115 unique images sourced from Backpage across seven U.S. cities in four geographic regions. This study extensively benchmarks text-only, vision-only, and multimodal baselines for vendor identification and verification tasks, employing multitask (joint) training objectives that achieve superior classification and retrieval performance on in-sample and out-of-data distribution datasets. The results demonstrate that while text remains the dominant modality, integrating visual features adds stylistic cues that enrich model performance. Moreover, text-image alignment strategies like CLIP and BLIP2 struggle due to low semantic overlap and vague connections between the modalities of escort ads, with end-to-end multimodal training proving more robust. Our findings emphasize the potential of multimodal AA to combat HT, providing Law Enforcement Agencies with robust tools to link advertisements and disrupt trafficking networks.