Viet Lai


2023

pdf
Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback
Viet Lai | Chien Nguyen | Nghia Ngo | Thuat Nguyen | Franck Dernoncourt | Ryan Rossi | Thien Nguyen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

A key technology for large language models (LLMs) involves instruction tuning that helps align the models’ responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are applied to produce the best commercial LLMs. To improve the accessibility of LLMs, various instruction-tuned open-source LLMs have also been introduced recently. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their accessibility to many other languages in the world. In addition, SFT has been used as the only approach to instruction-tune open-source LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework with created resources, fine-tuned LLMs, interaction scripts are released at https://github.com/nlp-uoregon/Okapi. A demo video to show our framework can also be found at: https://youtu.be/QFV2fkPwvi0.

2022

pdf
BehancePR: A Punctuation Restoration Dataset for Livestreaming Video Transcript
Viet Lai | Amir Pouran Ben Veyseh | Franck Dernoncourt | Thien Nguyen
Findings of the Association for Computational Linguistics: NAACL 2022

Given the increasing number of livestreaming videos, automatic speech recognition and post-processing for livestreaming video transcripts are crucial for efficient data management as well as knowledge mining. A key step in this process is punctuation restoration which restores fundamental text structures such as phrase and sentence boundaries from the video transcripts. This work presents a new human-annotated corpus, called BehancePR, for punctuation restoration in livestreaming video transcripts. Our experiments on BehancePR demonstrate the challenges of punctuation restoration for this domain. Furthermore, we show that popular natural language processing toolkits like Stanford Stanza, Spacy, and Trankit underperform on detecting sentence boundary on non-punctuated transcripts of livestreaming videos. The dataset is publicly accessible at http://github.com/nlp-uoregon/behancepr.

pdf
Event Detection for Suicide Understanding
Luis Guzman-Nateras | Viet Lai | Amir Pouran Ben Veyseh | Franck Dernoncourt | Thien Nguyen
Findings of the Association for Computational Linguistics: NAACL 2022

Suicide is a serious problem in every society. Understanding life events of a potential patient is essential for successful suicide-risk assessment and prevention. In this work, we focus on the Event Detection (ED) task to identify event trigger words of suicide-related events in public posts of discussion forums. In particular, we introduce SuicideED: a new dataset for the ED task that features seven suicidal event types to comprehensively capture suicide actions and ideation, and general risk and protective factors. Our experiments with current state-of-the-art ED systems suggest that this domain poses meaningful challenges as there is significant room for improvement of ED models. We will release SuicideED to support future research in this important area.

pdf
Multilingual SubEvent Relation Extraction: A Novel Dataset and Structure Induction Method
Viet Lai | Hieu Man | Linh Ngo | Franck Dernoncourt | Thien Nguyen
Findings of the Association for Computational Linguistics: EMNLP 2022

Subevent Relation Extraction (SRE) is a task in Information Extraction that aims to recognize spatial and temporal containment relations between event mentions in text. Recent methods have utilized pre-trained language models to represent input texts for SRE. However, a key issue in existing SRE methods is the employment of sequential order of words in texts to feed into representation learning methods, thus unable to explicitly focus on important context words and their interactions to enhance representations. In this work, we introduce a new method for SRE that learns to induce effective graph structures for input texts to boost representation learning. Our method features a word alignment framework with dependency paths and optimal transport to identify important context words to form effective graph structures for SRE. In addition, to enable SRE research on non-English languages, we present a new multilingual SRE dataset for five typologically different languages. Extensive experiments reveal the state-of-the-art performance for our method on different datasets and languages.

pdf bib
Few-Shot Cross-Lingual Learning for Event Detection
Luis Guzman Nateras | Viet Lai | Franck Dernoncourt | Thien Nguyen
Proceedings of the 2nd Workshop on Multi-lingual Representation Learning (MRL)

Cross-Lingual Event Detection (CLED) models are capable of performing the Event Detection (ED) task in multiple languages. Such models are trained using data from a source language and then evaluated on data from a distinct target language. Training is usually performed in the standard supervised setting with labeled data available in the source language. The Few-Shot Learning (FSL) paradigm is yet to be explored for CLED despite its inherent advantage of allowing models to better generalize to unseen event types. As such, in this work, we study the CLED task under an FSL setting. Our contribution is threefold: first, we introduce a novel FSL classification method based on Optimal Transport (OT); second, we present a novel regularization term to incorporate the global distance between the support and query sets; and third, we adapt our approach to the cross-lingual setting by exploiting the alignment between source and target data. Our experiments on three, syntactically-different, target languages show the applicability of our approach and its effectiveness at improving the cross-lingual performance of few-shot models for event detection.

pdf
BehanceCC: A ChitChat Detection Dataset For Livestreaming Video Transcripts
Viet Lai | Amir Pouran Ben Veyseh | Franck Dernoncourt | Thien Nguyen
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Livestreaming videos have become an effective broadcasting method for both video sharing and educational purposes. However, livestreaming videos contain a considerable amount of off-topic content (i.e., up to 50%) which introduces significant noises and data load to downstream applications. This paper presents BehanceCC, a new human-annotated benchmark dataset for off-topic detection (also called chitchat detection) in livestreaming video transcripts. In addition to describing the challenges of the dataset, our extensive experiments of various baselines reveal the complexity of chitchat detection for livestreaming videos and suggest potential future research directions for this task. The dataset will be made publicly available to foster research in this area.

pdf
BehanceQA: A New Dataset for Identifying Question-Answer Pairs in Video Transcripts
Amir Pouran Ben Veyseh | Viet Lai | Franck Dernoncourt | Thien Nguyen
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Question-Answer (QA) is one of the effective methods for storing knowledge which can be used for future retrieval. As such, identifying mentions of questions and their answers in text is necessary for a knowledge construction and retrieval systems. In the literature, QA identification has been well studied in the NLP community. However, most of the prior works are restricted to formal written documents such as papers or websites. As such, Questions and Answers that are presented in informal/noisy documents have not been adequately studied. One of the domains that can significantly benefit from QA identification is the domain of livestreaming video transcripts that involve abundant QA pairs to provide valuable knowledge for future users and services. Since video transcripts are often transcribed automatically for scale, they are prone to errors. Combined with the informal nature of discussion in a video, prior QA identification systems might not be able to perform well in this domain. To enable comprehensive research in this domain, we present a large-scale QA identification dataset annotated by human over transcripts of 500 hours of streamed videos. We employ Behance.net to collect the videos and their automatically obtained transcripts. Furthermore, we conduct extensive analysis on the annotated dataset to understand the complexity of QA identification for livestreaming video transcripts. Our experiments show that the annotated dataset presents unique challenges for existing methods and more research is necessary to explore more effective methods. The dataset and the models developed in this work will be publicly released for future research.

pdf
SemEval 2022 Task 12: Symlink - Linking Mathematical Symbols to their Descriptions
Viet Lai | Amir Pouran Ben Veyseh | Franck Dernoncourt | Thien Nguyen
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

We describe Symlink, a SemEval shared task of extracting mathematical symbols and their descriptions from LaTeX source of scientific documents. This is a new task in SemEval 2022, which attracted 180 individual registrations and 59 final submissions from 7 participant teams. We expect the data developed for this task and the findings reported to be valuable for the scientific knowledge extraction and automated knowledge base construction communities. The data used in this task is publicly accessible at https://github.com/nlp-oregon/symlink.

2021

pdf
Unleash GPT-2 Power for Event Detection
Amir Pouran Ben Veyseh | Viet Lai | Franck Dernoncourt | Thien Huu Nguyen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event Detection (ED) aims to recognize mentions of events (i.e., event triggers) and their types in text. Recently, several ED datasets in various domains have been proposed. However, the major limitation of these resources is the lack of enough training data for individual event types which hinders the efficient training of data-hungry deep learning models. To overcome this issue, we propose to exploit the powerful pre-trained language model GPT-2 to generate training samples for ED. To prevent the noises inevitable in automatically generated data from hampering training process, we propose to exploit a teacher-student architecture in which the teacher is supposed to learn anchor knowledge from the original data. The student is then trained on combination of the original and GPT-generated data while being led by the anchor knowledge from the teacher. Optimal transport is introduced to facilitate the anchor knowledge-based guidance between the two networks. We evaluate the proposed model on multiple ED benchmark datasets, gaining consistent improvement and establishing state-of-the-art results for ED.

pdf
Learning Prototype Representations Across Few-Shot Tasks for Event Detection
Viet Lai | Franck Dernoncourt | Thien Huu Nguyen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We address the sampling bias and outlier issues in few-shot learning for event detection, a subtask of information extraction. We propose to model the relations between training tasks in episodic few-shot learning by introducing cross-task prototypes. We further propose to enforce prediction consistency among classifiers across tasks to make the model more robust to outliers. Our extensive experiment shows a consistent improvement on three few-shot learning datasets. The findings suggest that our model is more robust when labeled data of novel event types is limited. The source code is available at http://github.com/laiviet/fsl-proact.