Victor Orozco-Olvera
2025
HateDay: Insights from a Global Hate Speech Dataset Representative of a Day on Twitter
Manuel Tonneau
|
Diyi Liu
|
Niyati Malhotra
|
Scott A. Hale
|
Samuel Fraiberger
|
Victor Orozco-Olvera
|
Paul Röttger
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
To address the global challenge of online hate speech, prior research has developed detection models to flag such content on social media. However, due to systematic biases in evaluation datasets, the real-world effectiveness of these models remains unclear, particularly across geographies. We introduce HateDay, the first global hate speech dataset representative of social media settings, constructed from a random sample of all tweets posted on September 21, 2022 and covering eight languages and four English-speaking countries. Using HateDay, we uncover substantial variation in the prevalence and composition of hate speech across languages and regions. We show that evaluations on academic datasets greatly overestimate real-world detection performance, which we find is very low, especially for non-European languages. Our analysis identifies key drivers of this gap, including models’ difficulty to distinguish hate from offensive speech and a mismatch between the target groups emphasized in academic datasets and those most frequently targeted in real-world settings. We argue that poor model performance makes public models ill-suited for automatic hate speech moderation and find that high moderation rates are only achievable with substantial human oversight. Our results underscore the need to evaluate detection systems on data that reflects the complexity and diversity of real-world social media.
2024
NaijaHate: Evaluating Hate Speech Detection on Nigerian Twitter Using Representative Data
Manuel Tonneau
|
Pedro Quinta De Castro
|
Karim Lasri
|
Ibrahim Farouq
|
Lakshmi Subramanian
|
Victor Orozco-Olvera
|
Samuel Fraiberger
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
To address the global issue of online hate, hate speech detection (HSD) systems are typically developed on datasets from the United States, thereby failing to generalize to English dialects from the Majority World. Furthermore, HSD models are often evaluated on non-representative samples, raising concerns about overestimating model performance in real-world settings. In this work, we introduce NaijaHate, the first dataset annotated for HSD which contains a representative sample of Nigerian tweets. We demonstrate that HSD evaluated on biased datasets traditionally used in the literature consistently overestimates real-world performance by at least two-fold. We then propose NaijaXLM-T, a pretrained model tailored to the Nigerian Twitter context, and establish the key role played by domain-adaptive pretraining and finetuning in maximizing HSD performance. Finally, owing to the modest performance of HSD systems in real-world conditions, we find that content moderators would need to review about ten thousand Nigerian tweets flagged as hateful daily to moderate 60% of all hateful content, highlighting the challenges of moderating hate speech at scale as social media usage continues to grow globally. Taken together, these results pave the way towards robust HSD systems and a better protection of social media users from hateful content in low-resource settings.
Search
Fix author
Co-authors
- Samuel Fraiberger 2
- Manuel Tonneau 2
- Ibrahim Farouq 1
- Scott A. Hale 1
- Karim Lasri 1
- show all...
Venues
- acl2