Vaishaal Shankar
2025
TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining
Jeffrey Li
|
Mohammadreza Armandpour
|
Seyed Iman Mirzadeh
|
Sachin Mehta
|
Vaishaal Shankar
|
Raviteja Vemulapalli
|
Samy Bengio
|
Oncel Tuzel
|
Mehrdad Farajtabar
|
Hadi Pouransari
|
Fartash Faghri
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) – orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains (Wikipedia, StackExchange, and code documentation) to assess how well various continual learning methods adapt to new data while retaining past knowledge. Our findings demonstrate that, on general CC data, autoregressive meta-schedules combined with a fixed-ratio replay of older data can achieve comparable held-out loss to re-training from scratch, while requiring significantly less computation (2.6x). However, the optimal balance between incorporating new data and replaying old data differs as replay is crucial to avoid forgetting on generic web data but less so on specific domains.
2024
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Yuhui Zhang
|
Brandon McKinzie
|
Zhe Gan
|
Vaishaal Shankar
|
Alexander T Toshev
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models’ capability.