V. W.


2025

pdf bib
TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos
Fanheng Kong | Jingyuan Zhang | Hongzhi Zhang | Shi Feng | Daling Wang | Linhao Yu | Xingguang Ji | Yu Tian | V. W. | Fuzheng Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models.

pdf bib
Evaluating Multimodal Large Language Models on Video Captioning via Monte Carlo Tree Search
Linhao Yu | Xingguang Ji | Yahui Liu | Fanheng Kong | Chenxi Sun | Jingyuan Zhang | Hongzhi Zhang | V. W. | Fuzheng Zhang | Deyi Xiong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Video captioning can be used to assess the video understanding capabilities of Multimodal Large Language Models (MLLMs).However, existing benchmarks and evaluation protocols suffer from crucial issues, such as inadequate or homogeneous creation of key points, exorbitant cost of data creation, and limited evaluation scopes. To address these issues, we propose an automatic framework, named AutoCaption, which leverages Monte Carlo Tree Search (MCTS) to construct numerous and diverse descriptive sentences (i.e., key points) that thoroughly represent video content in an iterative way. This iterative captioning strategy enables the continuous enhancement of video details such as actions, objects’ attributes, environment details, etc. We apply AutoCaption to curate MCTS-VCB, a fine-grained video caption benchmark covering video details, thereby enabling a comprehensive evaluation of MLLMs on the video captioning task. We evaluate more than 20 open- and closed-source MLLMs of varying sizes on MCTS-VCB. Results show that MCTS-VCB can effectively and comprehensively evaluate the video captioning capability, with Gemini-1.5-Pro achieving the highest F1 score of 71.2. Interestingly, we fine-tune InternVL2.5-8B with the AutoCaption-generated data, which helps the model achieve an overall improvement of 25.0% on MCTS-VCB and 16.3% on DREAM-1K, further demonstrating the effectiveness of AutoCaption. The code and data are available at https://github.com/tjunlp-lab/MCTS-VCB.

pdf bib
CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG
Yang Tian | Fan Liu | Jingyuan Zhang | V. W. | Yupeng Hu | Liqiang Nie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose Cross-source knowledge Reconciliation for MultiModal RAG (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6% and 9.3% performance gains on InfoSeek and Encyclopedic-VQA, respectively. We release code and data at https://github.com/TyangJN/CoRe-MMRAG.

pdf bib
Alleviating Hallucinations of Large Language Models through Induced Hallucinations
Yue Zhang | Leyang Cui | V. W. | Shuming Shi
Findings of the Association for Computational Linguistics: NAACL 2025

Despite their impressive capabilities, large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information, a phenomenon commonly known as hallucination. In this work, we propose a simple Induce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations. We first construct a factually weak LLM by inducing hallucinations from the original LLMs. Then, we penalize these induced hallucinations during decoding to enhance the factuality of the generated content. Concretely, we determine the final next-token predictions by amplifying the predictions from the original model and downplaying the induced untruthful predictions via contrastive decoding. Experimental results on both discrimination-based and generation-based hallucination evaluation benchmarks, such as TruthfulQA and FActScore, demonstrate that our proposed ICD methods can effectively enhance the factuality of LLMs across various task formats, model sizes, and model families. For example, when equipped with ICD, Llama2-7B-Chat and Mistral-7B-Instruct achieve performance comparable to ChatGPT and GPT4 on TruthfulQA, respectively, without compromising their generalization capabilities on other tasks.

pdf bib
ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series
Shuai Niu | Jing Ma | Hongzhan Lin | Liang Bai | Zhihua Wang | V. W. | Richard Yi Da Xu | Guo Li | Xian Yang
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored, particularly for integrating structured time series data with unstructured clinical notes. In clinical practice, dynamic time series data, such as lab test results, capture critical temporal patterns, while clinical notes provide rich semantic context. Merging these modalities is challenging due to the inherent differences between continuous signals and discrete text. To bridge this gap, we introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify these heterogeneous data types. Our approach leverages lightweight anomaly detection to generate anomaly captions that serve as prompts, guiding the encoding of raw time series data into informative prompt embeddings. These prompt embeddings are aligned with textual representations in a shared latent space, preserving fine-grained temporal nuances alongside semantic insights. Furthermore, our framework incorporates tailored self-supervised objectives to enhance both intra- and inter-modal alignment. We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.