Sunny Yu
2025
HumT DumT: Measuring and controlling human-like language in LLMs
Myra Cheng
|
Sunny Yu
|
Dan Jurafsky
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to deception, overreliance, and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs in many contexts. HumT also offers insights into the perceptions and impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
2024
CultureBank: An Online Community-Driven Knowledge Base Towards Culturally Aware Language Technologies
Weiyan Shi
|
Ryan Li
|
Yutong Zhang
|
Caleb Ziems
|
Sunny Yu
|
Raya Horesh
|
Rogério Abreu De Paula
|
Diyi Yang
Findings of the Association for Computational Linguistics: EMNLP 2024
To enhance language models’ cultural awareness, we design a generalizable pipeline to construct cultural knowledge bases from different online communities on a massive scale. With the pipeline, we construct CultureBank, a knowledge base built upon users’ self-narratives with 12K cultural descriptors sourced from TikTok and 11K from Reddit. Unlike previous cultural knowledge resources, CultureBank contains diverse views on cultural descriptors to allow flexible interpretation of cultural knowledge, and contextualized cultural scenarios to help grounded evaluation. With CultureBank, we evaluate different LLMs’ cultural awareness, and identify areas for improvement. We also fine-tune a language model on CultureBank: experiments show that it achieves better performances on two downstream cultural tasks in a zero-shot setting. Finally, we offer recommendations for future culturally aware language technologies. We release the CultureBank dataset, code and models at https://github.com/SALT-NLP/CultureBank. Our project page is at culturebank.github.io
Search
Fix author
Co-authors
- Myra Cheng 1
- Raya Horesh 1
- Dan Jurafsky 1
- Ryan Li 1
- Rogério Abreu De Paula 1
- show all...