Stephanie Eckman


2025

pdf bib
Mitigating Selection Bias with Node Pruning and Auxiliary Options
Hyeong Kyu Choi | Weijie Xu | Chi Xue | Stephanie Eckman | Chandan K. Reddy
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) often exhibit systematic preferences for certain answer choices when responding to multiple-choice questions—a behavior known as selection bias. This bias reduces the accuracy and reliability of LLM outputs, limiting their usefulness in decision-critical applications. While prior work has focused on adjusting model inputs or outputs to mitigate this issue, our work takes a fundamentally different approach by identifying and removing the internal sources of bias. We introduce two methods: Bias Node Pruning (BNP), which prunes parameters that contribute to selection bias, and Auxiliary Option Injection (AOI), which introduces an additional answer choice to reduce bias in both white-box and black-box settings. To address the shortcomings of existing evaluation metrics, we propose Choice Kullback-Leibler Divergence (CKLD), a new metric that captures distributional imbalances in model predictions. Experiments on three LLMs across multiple datasets demonstrate that our methods consistently improve answer accuracy while reducing selection bias, providing a robust solution for both open- and closed-source models.

2024

pdf bib
Order Effects in Annotation Tasks: Further Evidence of Annotation Sensitivity
Jacob Beck | Stephanie Eckman | Bolei Ma | Rob Chew | Frauke Kreuter
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)

The data-centric revolution in AI has revealed the importance of high-quality training data for developing successful AI models. However, annotations are sensitive to annotator characteristics, training materials, and to the design and wording of the data collection instrument. This paper explores the impact of observation order on annotations. We find that annotators’ judgments change based on the order in which they see observations. We use ideas from social psychology to motivate hypotheses about why this order effect occurs. We believe that insights from social science can help AI researchers improve data and model quality.

2023

pdf bib
Annotation Sensitivity: Training Data Collection Methods Affect Model Performance
Christoph Kern | Stephanie Eckman | Jacob Beck | Rob Chew | Bolei Ma | Frauke Kreuter
Findings of the Association for Computational Linguistics: EMNLP 2023

When training data are collected from human annotators, the design of the annotation instrument, the instructions given to annotators, the characteristics of the annotators, and their interactions can impact training data. This study demonstrates that design choices made when creating an annotation instrument also impact the models trained on the resulting annotations. We introduce the term annotation sensitivity to refer to the impact of annotation data collection methods on the annotations themselves and on downstream model performance and predictions. We collect annotations of hate speech and offensive language in five experimental conditions of an annotation instrument, randomly assigning annotators to conditions. We then fine-tune BERT models on each of the five resulting datasets and evaluate model performance on a holdout portion of each condition. We find considerable differences between the conditions for 1) the share of hate speech/offensive language annotations, 2) model performance, 3) model predictions, and 4) model learning curves. Our results emphasize the crucial role played by the annotation instrument which has received little attention in the machine learning literature. We call for additional research into how and why the instrument impacts the annotations to inform the development of best practices in instrument design.