Sourav Medya
2025
A Survey on Patent Analysis: From NLP to Multimodal AI
Homaira Huda Shomee
|
Zhu Wang
|
Sathya N. Ravi
|
Sourav Medya
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in Pretrained Language Models (PLMs) and Large Language Models (LLMs) have demonstrated transformative capabilities across diverse domains. The field of patent analysis and innovation is not an exception, where natural language processing (NLP) techniques presents opportunities to streamline and enhance important tasks—such as patent classification and patent retrieval—in the patent cycle. This not only accelerates the efficiency of patent researchers and applicants, but also opens new avenues for technological innovation and discovery. Our survey provides a comprehensive summary of recent NLP-based methods—including multimodal ones—in patent analysis. We also introduce a novel taxonomy for categorization based on tasks in the patent life cycle, as well as the specifics of the methods. This interdisciplinary survey aims to serve as a comprehensive resource for researchers and practitioners who work at the intersection of NLP, Multimodal AI, and patent analysis, as well as patent offices to build efficient patent systems.
Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach
Rochana Chaturvedi
|
Peyman Baghershahi
|
Sourav Medya
|
Barbara Di Eugenio
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GraphTREx, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities and improves the state-of-the-art with 5.5% improvement in the tempeval F1 score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. We further demonstrate generalizability by establishing a strong baseline on the E3C corpus. Not only does this work advance temporal information extraction, but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
2024
An Experimental Analysis on Evaluating Patent Citations
Rabindra Nath Nandi
|
Suman Kalyan Maity
|
Brian Uzzi
|
Sourav Medya
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The patent citation count is a good indicator of patent quality. This often generates monetary value for the inventors and organizations. However, the factors that influence a patent receiving high citations over the year are still not well understood. With the patents over the past two decades, we study the problem of patent citation prediction and formulate this as a binary classification problem. We create a semantic graph of patents based on their semantic similarities, enabling the use of Graph Neural Network (GNN)-based approaches for predicting citations. Our experimental results demonstrate the effectiveness of our GNN-based methods when applied to the semantic graph, showing that they can accurately predict patent citations using only patent text. More specifically, these methods produce up to 94% recall for patents with high citations and outperform existing baselines. Furthermore, we leverage this constructed graph to gain insights and explanations for the predictions made by the GNNs.