Silin Li
2025
HomeBench: Evaluating LLMs in Smart Homes with Valid and Invalid Instructions Across Single and Multiple Devices
Silin Li
|
Yuhang Guo
|
Jiashu Yao
|
Zeming Liu
|
Haifeng Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.
2024
TED-EL: A Corpus for Speech Entity Linking
Silin Li
|
Ruoyu Song
|
Tianwei Lan
|
Zeming Liu
|
Yuhang Guo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Speech entity linking amis to recognize mentions from speech and link them to entities in knowledge bases. Previous work on entity linking mainly focuses on visual context and text context. In contrast, speech entity linking focuses on audio context. In this paper, we first propose the speech entity linking task. To facilitate the study of this task, we propose the first speech entity linking dataset, TED-EL. Our corpus is a high-quality, human-annotated, audio, text, and mention-entity pair parallel dataset derived from Technology, Entertainment, Design (TED) talks and includes a wide range of entity types (24 types). Based on TED-EL, we designed two types of models: ranking-based and generative speech entity linking models. We conducted experiments on the TED-EL dataset for both types of models. The results show that the ranking-based models outperform the generative models, achieving an F1 score of 60.68%.
2022
BIT-Xiaomi’s System for AutoSimTrans 2022
Mengge Liu
|
Xiang Li
|
Bao Chen
|
Yanzhi Tian
|
Tianwei Lan
|
Silin Li
|
Yuhang Guo
|
Jian Luan
|
Bin Wang
Proceedings of the Third Workshop on Automatic Simultaneous Translation
This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track and the En-Es test-to-text track. In our system, wait-k is employed to train prefix-to-prefix translation models. We integrate streaming chunking to detect boundaries as the source streaming read in. We further improve our system with data selection, data-augmentation and R-drop training methods. Results show that our wait-k implementation outperforms organizer’s baseline by 8 BLEU score at most, and our proposed streaming chunking method further improves about 2 BLEU in low latency regime.
Search
Fix author
Co-authors
- Yuhang Guo (郭宇航) 3
- Tianwei Lan (兰天伟) 2
- Zeming Liu 2
- Bao Chen 1
- Xiang Li (李翔) 1
- show all...