Shuohuan Wang


2025

pdf bib
BeamLoRA: Beam-Constraint Low-Rank Adaptation
Naibin Gu | Zhenyu Zhang | Xiyu Liu | Peng Fu | Zheng Lin | Shuohuan Wang | Yu Sun | Hua Wu | Weiping Wang | Haifeng Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the demand for efficient fine-tuning of large language models, Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods. Nevertheless, while LoRA improves efficiency, there remains room for improvement in accuracy. Herein, we adopt a novel perspective to assess the characteristics of LoRA ranks. The results reveal that different ranks within the LoRA modules not only exhibit varying levels of importance but also evolve dynamically throughout the fine-tuning process, which may limit the performance of LoRA. Based on these findings, we propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution, and the fine-tuning process becomes a search for the optimal sub-solution combination. BeamLoRA dynamically eliminates underperforming sub-solutions while expanding the parameter space for promising ones, enhancing performance with a fixed rank. Extensive experiments across three base models and 12 datasets spanning math reasoning, code generation, and commonsense reasoning demonstrate that BeamLoRA consistently enhances the performance of LoRA, surpassing the other baseline methods.

pdf bib
HFT: Half Fine-Tuning for Large Language Models
Tingfeng Hui | Zhenyu Zhang | Shuohuan Wang | Weiran Xu | Yu Sun | Hua Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) with one or more fine-tuning phases have become necessary to unlock various capabilities, enabling LLMs to follow natural language instructions and align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. This paper finds that LLMs can restore some original knowledge by regularly resetting partial parameters. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks. In contrast, the other half are frozen to retain previous knowledge. We provide a feasibility analysis from the optimization perspective and interpret the parameter selection operation as a regularization term. HFT could be seamlessly integrated into existing fine-tuning frameworks without changing the model architecture. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.

pdf bib
Upcycling Instruction Tuning from Dense to Mixture-of-Experts via Parameter Merging
Tingfeng Hui | Zhenyu Zhang | Shuohuan Wang | Yu Sun | Hua Wu | Sen Su
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Mixture-of-Experts (MoE) shines brightly in large language models (LLMs) and demonstrates outstanding performance in plentiful natural language processing tasks. However, existing methods transforming LLMs from dense to MoE face significant data requirements and typically rely on large-scale post-training. In this paper, we propose Upcycling Instruction Tuning (UpIT), a data-efficient approach for tuning a dense pre-trained model into a MoE instruction model. Specifically, we first point out that intermediate checkpoints during instruction tuning of the dense model are naturally suitable for specialized experts, and then propose an expert expansion stage to flexibly achieve models with flexible numbers of experts, where genetic algorithm and parameter merging are introduced to ensure sufficient diversity of new extended experts. To ensure that each specialized expert in the MoE model works as expected, we select a small amount of seed data that each expert excels to pre-optimize the router. Extensive experiments with various data scales and upcycling settings demonstrate the outstanding performance and data efficiency of UpIT, as well as stable improvement in expert or data scaling. Further analysis reveals the importance of ensuring expert diversity in upcycling.

pdf bib
Curiosity-Driven Reinforcement Learning from Human Feedback
Haoran Sun | Yekun Chai | Shuohuan Wang | Yu Sun | Hua Wu | Haifeng Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but often at the cost of reduced output diversity. This trade-off between diversity and alignment quality remains a significant challenge. Drawing inspiration from curiosity-driven exploration in reinforcement learning, we introduce curiosity-driven RLHF (CD-RLHF), a framework that incorporates intrinsic rewards for novel states, alongside traditional sparse extrinsic rewards, to optimize both output diversity and alignment quality. We demonstrate the effectiveness of CD-RLHF through extensive experiments on a range of tasks, including text summarization and instruction following. Our approach achieves significant gains in diversity on multiple diversity-oriented metrics while maintaining alignment with human preferences comparable to standard RLHF. We will make our code publicly available.

pdf bib
Inner Thinking Transformer: Leveraging Dynamic Depth Scaling to Foster Adaptive Internal Thinking
Yilong Chen | Junyuan Shang | Zhenyu Zhang | Yanxi Xie | Jiawei Sheng | Tingwen Liu | Shuohuan Wang | Yu Sun | Hua Wu | Haifeng Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) face inherent performance bottlenecks under parameter constraints, particularly in processing critical tokens that demand complex reasoning. Empirical analysis reveals challenging tokens induce abrupt gradient spikes across layers, exposing architectural stress points in standard Transformers. Building on this insight, we propose Inner Thinking Transformer (ITT), which reimagines layer computations as implicit thinking steps. ITT dynamically allocates computation through Adaptive Token Routing, iteratively refines representations via Residual Thinking Connections, and distinguishes reasoning phases using Thinking Step Encoding. ITT enables deeper processing of critical tokens without parameter expansion. Evaluations across 162M-466M parameter models show ITT achieves 96.5% performance of a 466M Transformer using only 162M parameters, reduces training data by 43.2%, and outperforms Transformer/Loop variants in 11 benchmarks. By enabling elastic computation allocation during inference, ITT balances performance and efficiency through architecture-aware optimization of implicit thinking pathways.

2024

pdf bib
NACL: A General and Effective KV Cache Eviction Framework for LLM at Inference Time
Yilong Chen | Guoxia Wang | Junyuan Shang | Shiyao Cui | Zhenyu Zhang | Tingwen Liu | Shuohuan Wang | Yu Sun | Dianhai Yu | Hua Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have ignited an innovative surge of AI applications, marking a new era of exciting possibilities equipped with extended context windows. However, hosting these models is cost-prohibitive mainly due to the extensive memory consumption of KV Cache involving long-context modeling. Despite several works proposing to evict unnecessary tokens from the KV Cache, most of them rely on the biased local statistics of accumulated attention scores and report performance using unconvincing metric like perplexity on inadequate short-text evaluation. In this paper, we propose NACL, a general framework for long-context KV cache eviction that achieves more optimal and efficient eviction in a single operation during the encoding phase. Due to NACL’s efficiency, we combine more accurate attention score statistics in Proxy-Tokens Eviction with the diversified random eviction strategy of Random Eviction, aiming to alleviate the issue of attention bias and enhance the robustness in maintaining pivotal tokens for long-context modeling tasks. Notably, our method significantly improves the performance on short- and long-text tasks by 80% and 76% respectively, reducing KV Cache by up to with over 95% performance maintenance. Code available at https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2024-NACL.

pdf bib
LEMON: Reviving Stronger and Smaller LMs from Larger LMs with Linear Parameter Fusion
Yilong Chen | Junyuan Shang | Zhenyu Zhang | Shiyao Cui | Tingwen Liu | Shuohuan Wang | Yu Sun | Hua Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the new era of language models, small models (with billions of parameter sizes) are receiving increasing attention due to their flexibility and cost-effectiveness in deployment. However, limited by the model size, the performance of small models trained from scratch may often be unsatisfactory. Learning a stronger and smaller model with the help of larger models is an intuitive idea. Inspired by the observing modular structures in preliminary analysis, we propose LEMON to learn competent initial points for smaller models by fusing parameters from larger models, thereby laying a solid foundation for subsequent training. Specifically, the parameter fusion process involves two operators for layer and dimension, respectively, and we also introduce controllable receptive fields to model the prior parameter characteristics. In this way, the larger model could be transformed into any specific smaller scale and architecture. Starting from LLaMA 2-7B, we revive two stronger and smaller models with 1.3B and 2.7B. Experimental results demonstrate that the fusion-based method exhibits flexibility and outperforms a series of competitive baselines in terms of both effectiveness and efficiency.

pdf bib
Autoregressive Pre-Training on Pixels and Texts
Yekun Chai | Qingyi Liu | Jingwu Xiao | Shuohuan Wang | Yu Sun | Hua Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The integration of visual and textual information represents a promising direction in the advancement of language models. In this paper, we explore the dual modality of language—both visual and textual—within an autoregressive framework, pre-trained on both document images and texts. Our method employs a multimodal training strategy, utilizing visual data through next patch prediction with a regression head and/or textual data through next token prediction with a classification head. We focus on understanding the interaction between these two modalities and their combined impact on model performance. Our extensive evaluation across a wide range of benchmarks shows that incorporating both visual and textual data significantly improves the performance of pixel-based language models. Remarkably, we find that a unidirectional pixel-based model trained solely on visual data can achieve comparable results to state-of-the-art bidirectional models on several language understanding tasks. This work uncovers the untapped potential of integrating visual and textual modalities for more effective language modeling. We release our code, data, and model checkpoints at https://github.com/ernie-research/pixelgpt.

pdf bib
On Training Data Influence of GPT Models
Yekun Chai | Qingyi Liu | Shuohuan Wang | Yu Sun | Qiwei Peng | Hua Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We make our code and data publicly available at https://github.com/ernie-research/gptfluence.

2023

pdf bib
ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for Programming Languages
Yekun Chai | Shuohuan Wang | Chao Pang | Yu Sun | Hao Tian | Hua Wu
Findings of the Association for Computational Linguistics: ACL 2023

Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We release our code and pre-trained checkpoints.

pdf bib
ERNIE-Music: Text-to-Waveform Music Generation with Diffusion Models
Pengfei Zhu | Chao Pang | Yekun Chai | Lei Li | Shuohuan Wang | Yu Sun | Hao Tian | Hua Wu
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: System Demonstrations

pdf bib
Retrieval-Augmented Domain Adaptation of Language Models
Benfeng Xu | Chunxu Zhao | Wenbin Jiang | PengFei Zhu | Songtai Dai | Chao Pang | Zhuo Sun | Shuohuan Wang | Yu Sun
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Language models pretrained on general domain corpora usually exhibit considerable degradation when generalizing to downstream tasks of specialized domains. Existing approaches try to construct PLMs for each specific domains either from scratch or through further pretraining, which not only costs substantial resources, but also fails to cover all target domains at various granularity. In this work, we propose RADA, a novel Retrieval-Augmented framework for Domain Adaptation. We first construct a textual corpora that covers the downstream task at flexible domain granularity and resource availability. We employ it as a pluggable datastore to retrieve informative background knowledge, and integrate them into the standard language model framework to augment representations. We then propose a two-level selection scheme to integrate the most relevant information while alleviating irrelevant noises. Specifically, we introduce a differentiable sampling module as well as an attention mechanism to achieve both passage-level and word-level selection. Such a retrieval-augmented framework enables domain adaptation of language models with flexible domain coverage and fine-grained domain knowledge integration. We conduct comprehensive experiments across biomedical, science and legal domains to demonstrate the effectiveness of the overall framework, and its advantage over existing solutions.

2022

pdf bib
Clip-Tuning: Towards Derivative-free Prompt Learning with a Mixture of Rewards
Yekun Chai | Shuohuan Wang | Yu Sun | Hao Tian | Hua Wu | Haifeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2022

Derivative-free prompt learning has emerged as a lightweight alternative to prompt tuning, which only requires model inference to optimize the prompts. However, existing work did not take full advantage of the over-parameterized characteristics of large pre-trained language models (PLMs). In this paper, we propose Clip-Tuning, a simple yet effective method that adopts diverse frozen “thinned” networks of PLMs to obtain *a mixture of rewards* and thus advance the derivative-free prompt learning. The thinned networks consist of all the hidden units that survive a stationary dropout strategy, whose inference predictions reflect an ensemble of partial views over prompted training samples. Our method outperforms previous gradient-free prompt learning methods and achieves parity with gradient-based counterparts on seven language understanding benchmarks under few-shot settings.

pdf bib
X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection
Yaqian Han | Yekun Chai | Shuohuan Wang | Yu Sun | Hongyi Huang | Guanghao Chen | Yitong Xu | Yang Yang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Detecting sarcasm and verbal irony from people’s subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Detection in English and Arabic, which aims at detecting intended sarcasm in various settings of natural language understanding. Our solution finetunes pre-trained language models, such as ERNIE-M and DeBERTa, under the multilingual settings to recognize the irony from Arabic and English texts. Our system ranked second out of 43, and ninth out of 32 in Task A: one-sentence detection in English and Arabic; fifth out of 22 in Task B: binary multi-label classification in English; first out of 16, and fifth out of 13 in Task C: sentence-pair detection in English and Arabic.

pdf bib
X-PuDu at SemEval-2022 Task 7: A Replaced Token Detection Task Pre-trained Model with Pattern-aware Ensembling for Identifying Plausible Clarifications
Junyuan Shang | Shuohuan Wang | Yu Sun | Yanjun Yu | Yue Zhou | Li Xiang | Guixiu Yang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our winning system on SemEval 2022 Task 7: Identifying Plausible Clarifications ofImplicit and Underspecified Phrases in Instructional Texts. A replaced token detection pre-trained model is utilized with minorly different task-specific heads for SubTask-A: Multi-class Classification and SubTask-B: Ranking. Incorporating a pattern-aware ensemble method, our system achieves a 68.90% accuracy score and 0.8070 spearman’s rank correlation score surpassing the 2nd place with a large margin by 2.7 and 2.2 percent points for SubTask-A and SubTask-B, respectively. Our approach is simple and easy to implement, and we conducted ablation studies and qualitative and quantitative analyses for the working strategies used in our system.

2021

pdf bib
ERNIE-Doc: A Retrospective Long-Document Modeling Transformer
SiYu Ding | Junyuan Shang | Shuohuan Wang | Yu Sun | Hao Tian | Hua Wu | Haifeng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Transformers are not suited for processing long documents, due to their quadratically increasing memory and time consumption. Simply truncating a long document or applying the sparse attention mechanism will incur the context fragmentation problem or lead to an inferior modeling capability against comparable model sizes. In this paper, we propose ERNIE-Doc, a document-level language pretraining model based on Recurrence Transformers. Two well-designed techniques, namely the retrospective feed mechanism and the enhanced recurrence mechanism, enable ERNIE-Doc, which has a much longer effective context length, to capture the contextual information of a complete document. We pretrain ERNIE-Doc to explicitly learn the relationships among segments with an additional document-aware segment-reordering objective. Various experiments were conducted on both English and Chinese document-level tasks. ERNIE-Doc improved the state-of-the-art language modeling result of perplexity to 16.8 on WikiText-103. Moreover, it outperformed competitive pretraining models by a large margin on most language understanding tasks, such as text classification and question answering.

pdf bib
ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora
Xuan Ouyang | Shuohuan Wang | Chao Pang | Yu Sun | Hao Tian | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.

pdf bib
Correcting Chinese Spelling Errors with Phonetic Pre-training
Ruiqing Zhang | Chao Pang | Chuanqiang Zhang | Shuohuan Wang | Zhongjun He | Yu Sun | Hua Wu | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
abcbpc at SemEval-2021 Task 7: ERNIE-based Multi-task Model for Detecting and Rating Humor and Offense
Chao Pang | Xiaoran Fan | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Shikun Feng | Yu Sun
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense. The task is designed to detect and score humor and offense which are influenced by subjective factors. In order to obtain semantic information from a large amount of unlabeled data, we applied unsupervised pre-trained language models. By conducting research and experiments, we found that the ERNIE 2.0 and DeBERTa pre-trained models achieved impressive performance in various subtasks. Therefore, we applied the above pre-trained models to fine-tune the downstream neural network. In the process of fine-tuning the model, we adopted multi-task training strategy and ensemble learning method. Based on the above strategy and method, we achieved RMSE of 0.4959 for subtask 1b, and finally won the first place.

2020

pdf bib
Kk2018 at SemEval-2020 Task 9: Adversarial Training for Code-Mixing Sentiment Classification
Jiaxiang Liu | Xuyi Chen | Shikun Feng | Shuohuan Wang | Xuan Ouyang | Yu Sun | Zhengjie Huang | Weiyue Su
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Code switching is a linguistic phenomenon which may occur within a multilingual setting where speakers share more than one language. With the increasing communication between groups with different languages, this phenomenon is more and more popular. However, there are little research and data in this area, especially in code-mixing sentiment classification. In this work, the domain transfer learning from state-of-the-art uni-language model ERNIE is tested on the code-mixing dataset, and surprisingly, a strong baseline is achieved. And further more, the adversarial training with a multi-lingual model is used to achieved 1st place of SemEval-2020 Task9 Hindi-English sentiment classification competition.

pdf bib
Galileo at SemEval-2020 Task 12: Multi-lingual Learning for Offensive Language Identification Using Pre-trained Language Models
Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Yu Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes Galileo’s performance in SemEval-2020 Task 12 on detecting and categorizing offensive language in social media. For Offensive Language Identification, we proposed a multi-lingual method using Pre-trained Language Models, ERNIE and XLM-R. For offensive language categorization, we proposed a knowledge distillation method trained on soft labels generated by several supervised models. Our team participated in all three sub-tasks. In Sub-task A - Offensive Language Identification, we ranked first in terms of average F1 scores in all languages. We are also the only team which ranked among the top three across all languages. We also took the first place in Sub-task B - Automatic Categorization of Offense Types and Sub-task C - Offence Target Identification.

pdf bib
ERNIE at SemEval-2020 Task 10: Learning Word Emphasis Selection by Pre-trained Language Model
Zhengjie Huang | Shikun Feng | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Yu Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the system designed by ERNIE Team which achieved the first place in SemEval-2020 Task 10: Emphasis Selection For Written Text in Visual Media. Given a sentence, we are asked to find out the most important words as the suggestion for automated design. We leverage the unsupervised pre-training model and finetune these models on our task. After our investigation, we found that the following models achieved an excellent performance in this task: ERNIE 2.0, XLM-ROBERTA, ROBERTA and ALBERT. We combine a pointwise regression loss and a pairwise ranking loss which is more close to the final Match m metric to finetune our models. And we also find that additional feature engineering and data augmentation can help improve the performance. Our best model achieves the highest score of 0.823 and ranks first for all kinds of metrics.

2019

pdf bib
OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models for Suggestion Mining
Jiaxiang Liu | Shuohuan Wang | Yu Sun
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system partici- pated in Task 9 of SemEval-2019: the task is focused on suggestion mining and it aims to classify given sentences into sug- gestion and non-suggestion classes in do- main specific and cross domain training setting respectively. We propose a multi- perspective architecture for learning rep- resentations by using different classical models including Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Feed Forward Attention (FFA), etc. To leverage the semantics distributed in large amount of unsupervised data, we also have adopted the pre-trained Bidi- rectional Encoder Representations from Transformers (BERT) model as an en- coder to produce sentence and word rep- resentations. The proposed architecture is applied for both sub-tasks, and achieved f1-score of 0.7812 for subtask A, and 0.8579 for subtask B. We won the first and second place for the two tasks respec- tively in the final competition.