Shuo Han


2025

pdf bib
GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
Yukun Cao | Shuo Han | Zengyi Gao | Zezhong Ding | Xike Xie | S Kevin Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ”Positional bias”. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs’ comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.

pdf bib
RARE: Retrieval-Augmented Reasoning Enhancement for Large Language Models
Hieu Tran | Zonghai Yao | Zhichao Yang | Junda Wang | Yifan Zhang | Shuo Han | Feiyun Ouyang | Hong Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This work introduces RARE (Retrieval-Augmented Reasoning Enhancement), a versatile extension to the mutual reasoning framework (rStar), aimed at enhancing reasoning accuracy and factual integrity across large language models (LLMs) for complex, knowledge-intensive tasks such as medical and commonsense reasoning. RARE incorporates two innovative actions within the Monte Carlo Tree Search (MCTS) framework: (A6), which generates search queries based on the initial problem statement, performs information retrieval using those queries, and augments reasoning with the retrieved data to formulate the final answer; and (A7), which leverages information retrieval specifically for generated sub-questions and re-answers these sub-questions with the relevant contextual information. Additionally, a Retrieval-Augmented Factuality Scorer is proposed to replace the original discriminator, prioritizing reasoning paths that meet high standards of factuality. Experimental results with LLaMA 3.1 show that RARE enables open-source LLMs to achieve competitive performance with top closed-source models like GPT-4 and GPT-4o. This research establishes RARE as a scalable solution for improving LLMs in domains where logical coherence and factual integrity are critical.

2021

pdf bib
A Secure and Efficient Federated Learning Framework for NLP
Chenghong Wang | Jieren Deng | Xianrui Meng | Yijue Wang | Ji Li | Sheng Lin | Shuo Han | Fei Miao | Sanguthevar Rajasekaran | Caiwen Ding
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this work, we consider the problem of designing secure and efficient federated learning (FL) frameworks for NLP. Existing solutions under this literature either consider a trusted aggregator or require heavy-weight cryptographic primitives, which makes the performance significantly degraded. Moreover, many existing secure FL designs work only under the restrictive assumption that none of the clients can be dropped out from the training protocol. To tackle these problems, we propose SEFL, a secure and efficient federated learning framework that (1) eliminates the need for the trusted entities; (2) achieves similar and even better model accuracy compared with existing FL designs; (3) is resilient to client dropouts.