Shayekh Bin Islam


2025

pdf bib
M-RewardBench: Evaluating Reward Models in Multilingual Settings
Srishti Gureja | Lester James Validad Miranda | Shayekh Bin Islam | Rishabh Maheshwary | Drishti Sharma | Gusti Triandi Winata | Nathan Lambert | Sebastian Ruder | Sara Hooker | Marzieh Fadaee
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs’ performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.

2024

pdf bib
Open-RAG: Enhanced Retrieval Augmented Reasoning with Open-Source Large Language Models
Shayekh Bin Islam | Md Asib Rahman | K S M Tozammel Hossain | Enamul Hoque | Shafiq Joty | Md Rizwan Parvez
Findings of the Association for Computational Linguistics: EMNLP 2024

Retrieval Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs) by providing external evidence, but existing methods often suffer from limited reasoning capabilities (e.g., multi-hop complexities) in effectively using such evidence, particularly when using open-source LLMs. To mitigate this gap, in this paper, we introduce a novel framework, **Open-RAG**, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. By combining the constructive learning and architectural transformation, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. Additionally, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that Open-RAG outperforms state-of-the-art LLMs and RAG models in various knowledge-intensive tasks. Our method based on Llama2-7B sets new benchmarks, surpassing ChatGPT-RAG and Self-RAG. For example, in multi-hop HotpotQA, it achieves an EM score of 63.3, compared to RAG 2.0’s 54 and Command R+’s 60.