Seungwoo Choi


2025

pdf bib
BridG MT: Enhancing LLMs’ Machine Translation Capabilities with Sentence Bridging and Gradual MT
Seungwoo Choi | Gahyun Yoo | Jay-Yoon Lee
Findings of the Association for Computational Linguistics: ACL 2025

Recent Large Language Models (LLMs) have demonstrated impressive translation performance without requiring fine-tuning on additional parallel corpora. However, they still face significant challenges in certain scenarios, particularly when translating low-resource languages. A common approach to address this issue is to provide external knowledge, such as few-shot examples, to assist LLMs in translating specific source sentences. However, this method is fundamentally limited by the quality or quantity of relevant sources, which cannot always be guaranteed. To reduce LLMs’ reliance on external sources, we propose BridG MT, a method that combines Sentence Bridging, which generates a sequence of sentences as a bridge that gradually transition from easy-to-translate to more difficult, and Gradual MT, which sequentially translates these sentences using earlier translations as few-shot examples for subsequent ones. Experiments conducted on four LLMs across seven languages demonstrate that our method effectively enhances translation performance, even outperforming translation methods that rely on a large number of few-shot examples.

2024

pdf bib
Enhancing Robustness of Retrieval-Augmented Language Models with In-Context Learning
SeongIl Park | Seungwoo Choi | Nahyun Kim | Jay-Yoon Lee
Proceedings of the 3rd Workshop on Knowledge Augmented Methods for NLP

Retrieval-Augmented Language Models (RALMs) have significantly improved performance in open-domain question answering (QA) by leveraging external knowledge. However, RALMs still struggle with unanswerable queries, where the retrieved contexts do not contain the correct answer, and with conflicting information, where different sources provide contradictory answers due to imperfect retrieval. This study introduces an in-context learning-based approach to enhance the reasoning capabilities of RALMs, making them more robust in imperfect retrieval scenarios. Our method incorporates Machine Reading Comprehension (MRC) demonstrations, referred to as cases, to boost the model’s capabilities to identify unanswerabilities and conflicts among the retrieved contexts. Experiments on two open-domain QA datasets show that our approach increases accuracy in identifying unanswerable and conflicting scenarios without requiring additional fine-tuning. This work demonstrates that in-context learning can effectively enhance the robustness of RALMs in open-domain QA tasks.