Sungsoo Ahn


2025

pdf bib
Structural Reasoning Improves Molecular Understanding of LLM
Yunhui Jang | Jaehyung Kim | Sungsoo Ahn
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, large language models (LLMs) have shown significant progress, approaching human perception levels. In this work, we demonstrate that despite these advances, LLMs still struggle to reason using molecular structural information. This gap is critical because many molecular properties, including functional groups, depend heavily on such structural details. To address this limitation, we propose an approach that sketches molecular structures for reasoning. Specifically, we introduce Molecular Structural Reasoning (MSR) framework to enhance the understanding of LLMs by explicitly incorporating the key structural features. We present two frameworks for scenarios where the target molecule is known or unknown. We verify that our MSR improves molecular understanding through extensive experiments.

pdf bib
Enhancing LLM Agent Safety via Causal Influence Prompting
Dongyoon Hahm | Woogyeol Jin | June Suk Choi | Sungsoo Ahn | Kimin Lee
Findings of the Association for Computational Linguistics: ACL 2025

As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.