Suin Kim


2025

pdf bib
Generating Plausible Distractors for Multiple-Choice Questions via Student Choice Prediction
Yooseop Lee | Suin Kim | Yohan Jo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In designing multiple-choice questions (MCQs) in education, creating plausible distractors is crucial for identifying students’ misconceptions and gaps in knowledge and accurately assessing their understanding. However, prior studies on distractor generation have not paid sufficient attention to enhancing the difficulty of distractors, resulting in reduced effectiveness of MCQs. This study presents a pipeline for training a model to generate distractors that are more likely to be selected by students. First, we train a pairwise ranker to reason about students’ misconceptions and assess the relative plausibility of two distractors. Using this model, we create a dataset of pairwise distractor ranks and then train a distractor generator via Direct Preference Optimization (DPO) to generate more plausible distractors. Experiments on computer science subjects (Python, DB, MLDL) demonstrate that our pairwise ranker effectively identifies students’ potential misunderstandings and achieves ranking accuracy comparable to human experts. Furthermore, our distractor generator outperforms several baselines in generating plausible distractors and produces questions with a higher item discrimination index (DI).

pdf bib
Knowledge Tracing in Programming Education Integrating Students’ Questions
Doyoun Kim | Suin Kim | Yohan Jo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge tracing (KT) in programming education presents unique challenges due to the complexity of coding tasks and the diverse methods students use to solve problems. Although students’ questions often contain valuable signals about their understanding and misconceptions, traditional KT models often neglect to incorporate these questions as inputs to address these challenges. This paper introduces SQKT (Students’ Question-based Knowledge Tracing), a knowledge tracing model that leverages students’ questions and automatically extracted skill information to enhance the accuracy of predicting students’ performance on subsequent problems in programming education. Our method creates semantically rich embeddings that capture not only the surface-level content of the questions but also the student’s mastery level and conceptual understanding. Experimental results demonstrate SQKT’s superior performance in predicting student completion across various Python programming courses of differing difficulty levels. In in-domain experiments, SQKT achieved a 33.1% absolute improvement in AUC compared to baseline models. The model also exhibited robust generalization capabilities in cross-domain settings, effectively addressing data scarcity issues in advanced programming courses. SQKT can be used to tailor educational content to individual learning needs and design adaptive learning systems in computer science education.

2012

pdf bib
Self-Disclosure and Relationship Strength in Twitter Conversations
JinYeong Bak | Suin Kim | Alice Oh
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)