Soonwon Ka


2025

pdf bib
Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models
Yukyung Lee | Soonwon Ka | Bokyung Son | Pilsung Kang | Jaewook Kang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Large Language Models (LLMs) have impacted the writing process, enhancing productivity by collaborating with humans in content creation platforms. However, generating high-quality, user-aligned text to satisfy real-world content creation needs remains challenging. We propose WritingPath, a framework that uses explicit outlines to guide LLMs in generating goal-oriented, high-quality text. Our approach draws inspiration from structured writing planning and reasoning paths, focusing on reflecting user intentions throughout the writing process. To validate our approach in real-world scenarios, we construct a diverse dataset from unstructured blog posts to benchmark writing performance and introduce a comprehensive evaluation framework assessing the quality of outlines and generated texts. Our evaluations with various LLMs demonstrate that the WritingPath approach significantly enhances text quality according to evaluations by both LLMs and professional writers.

2023

pdf bib
HyperT5: Towards Compute-Efficient Korean Language Modeling
Dongju Park | Soonwon Ka | Kang Min Yoo | Gichang Lee | Jaewook Kang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Pretraining and fine-tuning language models have become the standard practice in industrial natural language processing (NLP), but developing and deploying general-purpose language models without the abundant computation or data resources is a real-world issue faced by smaller organizations or communities whose main focus is languages with less accessible resources (e.g., non-English). This paper explores the sequence-to-sequence (seq2seq) language model architecture as a more practical and compute-efficient alternative to the decoder-oriented approach (e.g., GPT-3), accompanied by novel findings in compute-optimality analyses. We successfully trained billion-scale Korean-language seq2seq language models that strongly outperform other competitive models in Korean benchmarks. Moreover, we demonstrate that such language models can be more efficiently utilized by employing a heavy pre-finetuning strategy, by showcasing a case study on dialog-task adaptation. Our case study shows that adopting language models with more readily available domain-specific unlabeled data greatly improves fine-tuning data efficiency in low-resource settings.