Sirui Han


2025

pdf bib
LegalReasoner: Step-wised Verification-Correction for Legal Judgment Reasoning
Weijie Shi | Han Zhu | Jiaming Ji | Mengze Li | Jipeng Zhang | Ruiyuan Zhang | Jia Zhu | Jiajie Xu | Sirui Han | Yike Guo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Legal judgment prediction (LJP) aims to function as a judge by making final rulings based on case claims and facts, which plays a vital role in the judicial domain for supporting court decision-making and improving judicial efficiency. However, existing methods often struggle with logical errors when conducting complex legal reasoning. We propose LegalReasoner, which enhances LJP reliability through step-wise verification and correction of the reasoning process. Specifically, it first identifies dispute points to decompose complex cases, and then conducts step-wise reasoning while employing a process verifier to validate each step’s logic from correctness, progressiveness, and potential perspectives. When errors are detected, expert-designed attribution and resolution strategies are applied for correction. To fine-tune LegalReasoner, we release the LegalHK dataset, containing 58,130 Hong Kong court cases with detailed annotations of dispute points, step-by-step reasoning chains, and process verification labels. Experiments demonstrate that LegalReasoner significantly improves concordance with court decisions from 72.37 to 80.27 on LLAMA-3.1-70B. The data is available at https://huggingface.co/datasets/weijiezz/LegalHK.

pdf bib
PrivaCI-Bench: Evaluating Privacy with Contextual Integrity and Legal Compliance
Haoran Li | Wenbin Hu | Huihao Jing | Yulin Chen | Qi Hu | Sirui Han | Tianshu Chu | Peizhao Hu | Yangqiu Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in generative large language models (LLMs) have enabled wider applicability, accessibility, and flexibility. However, their reliability and trustworthiness are still in doubt, especially for concerns regarding individuals’ data privacy. Great efforts have been made on privacy by building various evaluation benchmarks to study LLMs’ privacy awareness and robustness from their generated outputs to their hidden representations. Unfortunately, most of these works adopt a narrow formulation of privacy and only investigate personally identifiable information (PII). In this paper, we follow the merit of the Contextual Integrity (CI) theory, which posits that privacy evaluation should not only cover the transmitted attributes but also encompass the whole relevant social context through private information flows. We present PrivaCI-Bench, a comprehensive contextual privacy evaluation benchmark targeted at legal compliance to cover well-annotated privacy and safety regulations, real court cases, privacy policies, and synthetic data built from the official toolkit to study LLMs’ privacy and safety compliance. We evaluate the latest LLMs, including the recent reasoner models QwQ-32B and Deepseek R1. Our experimental results suggest that though LLMs can effectively capture key CI parameters inside a given context, they still require further advancements for privacy compliance.

pdf bib
FinMME: Benchmark Dataset for Financial Multi-Modal Reasoning Evaluation
Junyu Luo | Zhizhuo Kou | Liming Yang | Xiao Luo | Jinsheng Huang | Zhiping Xiao | Jingshu Peng | Chengzhong Liu | Jiaming Ji | Xuanzhe Liu | Sirui Han | Ming Zhang | Yike Guo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, in the financial domain, there is a notable lack of effective and specialized multimodal evaluation datasets. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. Extensive experimental results demonstrate that even state-of-the-art models like GPT-4o exhibit unsatisfactory performance on FinMME, highlighting its challenging nature. The benchmark exhibits high robustness with prediction variations under different prompts remaining below 1%, demonstrating superior reliability compared to existing datasets. Our dataset and evaluation protocol are available at https://huggingface.co/datasets/luojunyu/FinMME and https://github.com/luo-junyu/FinMME.

pdf bib
PKU-SafeRLHF: Towards Multi-Level Safety Alignment for LLMs with Human Preference
Jiaming Ji | Donghai Hong | Borong Zhang | Boyuan Chen | Josef Dai | Boren Zheng | Tianyi Alex Qiu | Jiayi Zhou | Kaile Wang | Boxun Li | Sirui Han | Yike Guo | Yaodong Yang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work, we introduce the PKU-SafeRLHF dataset, designed to promote research on safety alignment in large language models (LLMs). As a sibling project to SafeRLHF and BeaverTails, we separate annotations of helpfulness and harmlessness for question-answering pairs, providing distinct perspectives on these coupled attributes. Overall, we provide 44.6k refined prompts and 265k question-answer pairs with safety meta-labels for 19 harm categories and three severity levels ranging from minor to severe, with answers generated by Llama-family models. Based on this, we collected 166.8k preference data, including dual-preference (helpfulness and harmlessness decoupled) and single-preference data (trade-off the helpfulness and harmlessness from scratch), respectively. Using the large-scale annotation data, we further train severity-sensitive moderation for the risk control of LLMs and safety-centric RLHF algorithms for the safety alignment of LLMs. We believe this dataset will be a valuable resource for the community, aiding in the safe deployment of LLMs.

pdf bib
Boosting Policy and Process Reward Models with Monte Carlo Tree Search in Open-Domain QA
Chi-Min Chan | Chunpu Xu | Junqi Zhu | Jiaming Ji | Donghai Hong | Pengcheng Wen | Chunyang Jiang | Zhen Ye | Yaodong Yang | Wei Xue | Sirui Han | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2025

The recent introduction of OpenAI’s O1/O3 model represents a significant milestone in developing strong reasoning capabilities in Large Language Models (LLMs). By introducing more computational budget during test-time, LLMs have the potential to explore more accurate and higher-quality solutions. However, such paradigms are primarily verified in domains that have well-defined criteria for responses, such as coding and mathematics. Inspired by the success of this paradigm, we aim to bridge it to more subtle open-domain question answering. Specifically, we utilize search mechanisms such as Monte Carlo Tree Search (MCTS) for both policy model improvement and reward model improvement that achieve better performance in test-time scaling strategies. Our contributions are summarized in two folds: For the training phase, we demonstrate that our approach surpasses previous SOTA automatic data annotation methods and various public instruction-tuning datasets, with fewer data points. This offers a more data-efficient solution for training robust models. For the inference phase, we utilize the intermediate values collected during training data construction to train a process reward model called PRM+. This model employs a novel two-stage training method to provide finer-grained guidance across the generation trajectory. This introduces no additional overhead during training data collection and further enhances performance by scaling test-time computation. Experimental results show that our method can effectively improve the performance of both the policy model and the reward model.

pdf bib
SafeLawBench: Towards Safe Alignment of Large Language Models
Chuxue Cao | Han Zhu | Jiaming Ji | Qichao Sun | Zhenghao Zhu | Wu Yinyu | Josef Dai | Yaodong Yang | Sirui Han | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2025

With the growing prevalence of large language models (LLMs), the safety of LLMs has raised significant concerns. However, there is still a lack of definitive standards for evaluating their safety due to the subjective nature of current safety benchmarks. To address this gap, we conducted the first exploration of LLMs’ safety evaluation from a legal perspective by proposing the SafeLawBench benchmark. SafeLawBench categorizes safety risks into three levels based on legal standards, providing a systematic and comprehensive framework for evaluation. It comprises 24,860 multi-choice questions and 1,106 open-domain question-answering (QA) tasks. Our evaluation included 2 closed-source LLMs and 18 open-source LLMs using zero-shot and few-shot prompting, highlighting the safety features of each model. We also evaluated the LLMs’ safety-related reasoning stability and refusal behavior. Additionally, we found that a majority voting mechanism can enhance model performance. Notably, even leading SOTA models like Claude-3.5-Sonnet and GPT-4o have not exceeded 80.5% accuracy in multi-choice tasks on SafeLawBench, while the average accuracy of 20 LLMs remains at 68.8%. We urge the community to prioritize research on the safety of LLMs.

pdf bib
Out-of-Distribution Detection via LLM-Guided Outlier Generation for Text-attributed Graph
Xiangwei Lv | Mengze Li | Jingyuan Chen | Zhiang Dong | Sirui Han | Beishui Liao
Findings of the Association for Computational Linguistics: ACL 2025

Text-Attributed Graphs (TAGs), which are characterized with text attributes, are widely used in the real world. When evaluating fully trained models designed for TAG predictions, they may perform significantly unsatisfactory on samples outside the In-Distribution (ID) data, which may raise serious security issues. To tackle it, Out-Of-Distribution (OOD) detection is introduced to the TAGs field, which aims to utilize a detector to classify OOD and ID samples. Recent studies attempt to introduce extra OOD datasets to regularize the detection model. However, due to the vastness of the OOD data space, high-quality OOD samples for training the detector are scarce and difficult to obtain in the real world. Thus, we utilize Large Language Models (LLMs) to generate the OOD training samples with high quality. There are two issues in this process: (1) LLMs tend to generate OOD-node samples significantly different from ID ones, with a limited learning value for OOD and ID relations. (2) Due to the inherent structure of TAGs, obtained OOD nodes need to be integrated with existing nodes by generating edges using LLMs. However, the large number of nodes makes reasoning over each node pair computationally unbearable. Toward these issues, we introduce LLMGuard with challenging OOD-node generation and lightweight edge predictors. Extensive experiments prove the effectiveness of LLMGuard. The source code is available.

pdf bib
Benchmarking Multi-National Value Alignment for Large Language Models
Chengyi Ju | Weijie Shi | Chengzhong Liu | Jiaming Ji | Jipeng Zhang | Ruiyuan Zhang | Jiajie Xu | Yaodong Yang | Sirui Han | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2025

Do Large Language Models (LLMs) hold positions that conflict with your country’s values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values. We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs’ values with the target country.