Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs’ internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs’ internal representations. By employing 𝒱-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.
Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. Unlike traditional model compression, which needs retraining, recent dynamic computation methods show that not all components are required for inference, enabling a training-free pipeline.In this paper, we focus on the dynamic depth of LLM generation. A token-position aware layer skipping framework is proposed to save 1.5x times operations efficiently while maintaining performance.We first observed that tokens predicted later have lower perplexity and thus require less computation. Then, we propose a training-free algorithm called Position-Aware Depth Decay Decoding (), which leverages a power-law decay function, \left\lfloor L × (𝛼i) \right\rfloor, to determine the number of layers to retain when generating token Ti. Remarkably, without any retraining, the achieves success across a wide range of generation tasks for the first time.Experiments on large language models (the Llama) with 7 ∼ 70 billion parameters show that can achieve an average 1.5x speedup compared with the full-inference pipeline while maintaining comparable performance with nearly no performance drop (<1%) on the GSM8K and BBH benchmarks.
Supervised fine-tuning (SFT) is crucial for adapting Large Language Models (LLMs) to specific tasks. In this work, we demonstrate that the order of training data can lead to significant training imbalances, potentially resulting in performance degradation. Consequently, we propose to mitigate this imbalance by merging SFT models fine-tuned with different data orders, thereby enhancing the overall effectiveness of SFT. Additionally, we introduce a novel technique, “parameter-selection merging,” which outperforms traditional weighted-average methods on five datasets. Further, through analysis and ablation studies, we validate the effectiveness of our method and identify the sources of performance improvements.