Simon Welz


2025

pdf bib
Multi-Hop Reasoning for Question Answering with Hyperbolic Representations
Simon Welz | Lucie Flek | Akbar Karimi
Findings of the Association for Computational Linguistics: ACL 2025

Hyperbolic representations are effective in modeling knowledge graph data which is prevalently used to facilitate multi-hop reasoning. However, a rigorous and detailed comparison of the two spaces for this task is lacking. In this paper, through a simple integration of hyperbolic representations with an encoder-decoder model, we perform a controlled and comprehensive set of experiments to compare the capacity of hyperbolic space versus Euclidean space in multi-hop reasoning. Our results show that the former consistently outperforms the latter across a diverse set of datasets. In addition, through an ablation study, we show that a learnable curvature initialized with the delta hyperbolicity of the utilized data yields superior results to random initializations. Furthermore, our findings suggest that hyperbolic representations can be significantly more advantageous when the datasets exhibit a more hierarchical structure.