This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present Superlim, a multi-task NLP benchmark and analysis platform for evaluating Swedish language models, a counterpart to the English-language (Super)GLUE suite. We describe the dataset, the tasks, the leaderboard and report the baseline results yielded by a reference implementation. The tested models do not approach ceiling performance on any of the tasks, which suggests that Superlim is truly difficult, a desirable quality for a benchmark. We address methodological challenges, such as mitigating the Anglocentric bias when creating datasets for a less-resourced language; choosing the most appropriate measures; documenting the datasets and making the leaderboard convenient and transparent. We also highlight other potential usages of the dataset, such as, for instance, the evaluation of cross-lingual transfer learning.
Historical corpora are known to contain errors introduced by OCR (optical character recognition) methods used in the digitization process, often said to be degrading the performance of NLP systems. Correcting these errors manually is a time-consuming process and a great part of the automatic approaches have been relying on rules or supervised machine learning. We build on previous work on fully automatic unsupervised extraction of parallel data to train a character-based sequence-to-sequence NMT (neural machine translation) model to conduct OCR error correction designed for English, and adapt it to Finnish by proposing solutions that take the rich morphology of the language into account. Our new method shows increased performance while remaining fully unsupervised, with the added benefit of spelling normalisation. The source code and models are available on GitHub and Zenodo.
Language models are notoriously difficult to evaluate. We release SuperSim, a large-scale similarity and relatedness test set for Swedish built with expert human judgements. The test set is composed of 1,360 word-pairs independently judged for both relatedness and similarity by five annotators. We evaluate three different models (Word2Vec, fastText, and GloVe) trained on two separate Swedish datasets, namely the Swedish Gigaword corpus and a Swedish Wikipedia dump, to provide a baseline for future comparison. We will release the fully annotated test set, code, models, and data.
Word meaning is notoriously difficult to capture, both synchronically and diachronically. In this paper, we describe the creation of the largest resource of graded contextualized, diachronic word meaning annotation in four different languages, based on 100,000 human semantic proximity judgments. We describe in detail the multi-round incremental annotation process, the choice for a clustering algorithm to group usages into senses, and possible – diachronic and synchronic – uses for this dataset.
Lexical Semantic Change detection, i.e., the task of identifying words that change meaning over time, is a very active research area, with applications in NLP, lexicography, and linguistics. Evaluation is currently the most pressing problem in Lexical Semantic Change detection, as no gold standards are available to the community, which hinders progress. We present the results of the first shared task that addresses this gap by providing researchers with an evaluation framework and manually annotated, high-quality datasets for English, German, Latin, and Swedish. 33 teams submitted 186 systems, which were evaluated on two subtasks.
Languages change over time and, thanks to the abundance of digital corpora, their evolutionary analysis using computational techniques has recently gained much research attention. In this paper, we focus on creating a dataset to support investigating the similarity in evolution between different languages. We look in particular into the similarities and differences between the use of corresponding words across time in English and French, two languages from different linguistic families yet with shared syntax and close contact. For this we select a set of cognates in both languages and study their frequency changes and correlations over time. We propose a new dataset for computational approaches of synchronized diachronic investigation of language pairs, and subsequently show novel findings stemming from the cognate-focused diachronic comparison of the two chosen languages. To the best of our knowledge, the present study is the first in the literature to use computational approaches and large data to make a cross-language diachronic analysis.
State-of-the-art models of lexical semantic change detection suffer from noise stemming from vector space alignment. We have empirically tested the Temporal Referencing method for lexical semantic change and show that, by avoiding alignment, it is less affected by this noise. We show that, trained on a diachronic corpus, the skip-gram with negative sampling architecture with temporal referencing outperforms alignment models on a synthetic task as well as a manual testset. We introduce a principled way to simulate lexical semantic change and systematically control for possible biases.
Word meaning changes over time, depending on linguistic and extra-linguistic factors. Associating a word’s correct meaning in its historical context is a central challenge in diachronic research, and is relevant to a range of NLP tasks, including information retrieval and semantic search in historical texts. Bayesian models for semantic change have emerged as a powerful tool to address this challenge, providing explicit and interpretable representations of semantic change phenomena. However, while corpora typically come with rich metadata, existing models are limited by their inability to exploit contextual information (such as text genre) beyond the document time-stamp. This is particularly critical in the case of ancient languages, where lack of data and long diachronic span make it harder to draw a clear distinction between polysemy (the fact that a word has several senses) and semantic change (the process of acquiring, losing, or changing senses), and current systems perform poorly on these languages. We develop GASC, a dynamic semantic change model that leverages categorical metadata about the texts’ genre to boost inference and uncover the evolution of meanings in Ancient Greek corpora. In a new evaluation framework, our model achieves improved predictive performance compared to the state of the art.
A great deal of historical corpora suffer from errors introduced by the OCR (optical character recognition) methods used in the digitization process. Correcting these errors manually is a time-consuming process and a great part of the automatic approaches have been relying on rules or supervised machine learning. We present a fully automatic unsupervised way of extracting parallel data for training a character-based sequence-to-sequence NMT (neural machine translation) model to conduct OCR error correction.