Shreya Gautam


2025

pdf bib
SEPSIS: I Can Catch Your Lies – A New Paradigm for Deception Detection
Anku Rani | Dwip Dalal | Shreya Gautam | Pankaj Gupta | Vinija Jain | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of “Times of India”, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies (black, white, grey, and red), and (iii) the intention of such lies (to influence, gain social prestige, etc) (iv) topic of lies (political, educational, religious, racial, and ethnicity). We present a novel multi-task learning [MTL] pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an impressive F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research aims to explore the relationship between the lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we are releasing the SEPSIS dataset and code at https://huggingface.co/datasets/ankurani/deception.

2023

pdf bib
FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering
Anku Rani | S.M Towhidul Islam Tonmoy | Dwip Dalal | Shreya Gautam | Megha Chakraborty | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether it’s truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (delineating which part(s) are true and which are false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we present a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 391, 041 facts along with relevant 5W QAs – underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can serve as a baseline for future research in the field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https: //github.com/ankuranii/acl-5W-QA

pdf bib
Counter Turing Test (CT2): AI-Generated Text Detection is Not as Easy as You May Think - Introducing AI Detectability Index (ADI)
Megha Chakraborty | S.M Towhidul Islam Tonmoy | S M Mehedi Zaman | Shreya Gautam | Tanay Kumar | Krish Sharma | Niyar Barman | Chandan Gupta | Vinija Jain | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

With the rise of prolific ChatGPT, the risk and consequences of AI-generated text has increased alarmingly. This triggered a series of events, including an open letter, signed by thousands of researchers and tech leaders in March 2023, demanding a six-month moratorium on the training of AI systems more sophisticated than GPT-4. To address the inevitable question of ownership attribution for AI-generated artifacts, the US Copyright Office released a statement stating that “if the content is traditional elements of authorship produced by a machine, the work lacks human authorship and the office will not register it for copyright”. Furthermore, both the US and the EU governments have recently drafted their initial proposals regarding the regulatory framework for AI. Given this cynosural spotlight on generative AI, AI-generated text detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by the emergence of techniques to bypass detection. This paper introduces the Counter Turing Test (CT2), a benchmark consisting of techniques aiming to offer a comprehensive evaluation of the robustness of existing AGTD techniques. Our empirical findings unequivocally highlight the fragility of the proposed AGTD methods under scrutiny. Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess the detectability of content generated by LLMs. Thus, to establish a quantifiable spectrum facilitating the evaluation and ranking of LLMs according to their detectability levels, we propose the AI Detectability Index (ADI). We conduct a thorough examination of 15 contemporary LLMs, empirically demonstrating that larger LLMs tend to have a lower ADI, indicating they are less detectable compared to smaller LLMs. We firmly believe that ADI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making.