Shanshan Ye


2025

pdf bib
Training-free LLM Merging for Multi-task Learning
Zichuan Fu | Xian Wu | Yejing Wang | Wanyu Wang | Shanshan Ye | Hongzhi Yin | Yi Chang | Yefeng Zheng | Xiangyu Zhao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse natural language processing (NLP) tasks. The release of open-source LLMs like LLaMA and Qwen has triggered the development of numerous fine-tuned models tailored for various tasks and languages. In this paper, we explore an important question: is it possible to combine these specialized models to create a unified model with multi-task capabilities. We introduces **H**ierarchical **I**terative **Merging** (Hi-Merging), a training-free method for unifying different specialized LLMs into a single model. Specifically, Hi-Merging employs model-wise and layer-wise pruning and scaling, guided by contribution analysis, to mitigate parameter conflicts. Extensive experiments on multiple-choice and question-answering tasks in both Chinese and English validate Hi-Merging’s ability for multi-task learning. The results demonstrate that Hi-Merging consistently outperforms existing merging techniques and surpasses the performance of models fine-tuned on combined datasets in most scenarios. Code is available at [Applied-Machine-Learning-Lab/Hi-Merging](https://github.com/Applied-Machine-Learning-Lab/Hi-Merging).