Shang Zhou


2025

pdf bib
Scaling LLM Inference Efficiently with Optimized Sample Compute Allocation
Kexun Zhang | Shang Zhou | Danqing Wang | William Yang Wang | Lei Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Sampling is a basic operation for large language models (LLMs). In reinforcement learning rollouts and meta generation algorithms such as Best-of-N, it is essential to sample correct trajectories within a given compute budget. To find an optimal allocation for sample compute budgets, several choices need to be made:Which sampling configurations (model, temperature, language, etc.) to use?How many samples to generate in each configuration?We formulate these choices as a learning problem and propose OSCA, an algorithm that Optimizes Sample Compute Allocation by finding an optimal mix of different inference configurations.Our experiments show that with our learned mixed allocation, we can achieve accuracy better than the best single configuration with 128x less compute on code generation and 25x less compute on 4 reasoning tasks.is also shown to be effective in agentic workflows beyond single-turn tasks, achieving a better accuracy on SWE-Bench with 3x less compute than the default configuration.Our code and generations are released at https://github.com/LeiLiLab/OSCA.

2024

pdf bib
Evaluating the Smooth Control of Attribute Intensity in Text Generation with LLMs
Shang Zhou | Feng Yao | Chengyu Dong | Zihan Wang | Jingbo Shang
Findings of the Association for Computational Linguistics: ACL 2024

Controlling the attribute intensity of text generation is crucial across scenarios (e.g., writing conciseness, chatting emotion, and explanation clarity). The remarkable capabilities of large language models (LLMs) have revolutionized text generation, prompting us to explore such smooth control of LLM generation. Specifically, we propose metrics to assess the range, calibration, and consistency of the generated text’s attribute intensity in response to varying control values, as well as its relevance to the intended context. To quantify the attribute intensity and context relevance, we leverage an Elo rating system and GPT4, respectively, both renowned for their robust alignment with human judgment. We look into two viable training-free methods for achieving smooth control of LLMs: (1) Prompting with semantic shifters, and (2) Modifying internal model representations. The evaluations of these two methods are conducted on 5 different attributes with various models.