Sara Pieri


2025

pdf bib
The Structural Safety Generalization Problem
Julius Broomfield | Tom Gibbs | George Ingebretsen | Ethan Kosak-Hine | Tia Nasir | Jason Zhang | Reihaneh Iranmanesh | Sara Pieri | Reihaneh Rabbany | Kellin Pelrine
Findings of the Association for Computational Linguistics: ACL 2025

LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge—more tractable than universal defenses but essential for long-term safety—we highlight a critical milestone for AI safety research.

2024

pdf bib
BiMediX: Bilingual Medical Mixture of Experts LLM
Sara Pieri | Sahal Shaji Mullappilly | Fahad Shahbaz Khan | Rao Muhammad Anwer | Salman Khan | Timothy Baldwin | Hisham Cholakkal
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set that covers 1.3 Million diverse medical interactions, including 200k synthesized multi-turn doctor-patient chats, in a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic and 15% on our bilingual evaluations across multiple datasets. Additionally, BiMediX exceeds the accuracy of GPT4 by 4.4% in open-ended question UPHILL evaluation and largely outperforms state-of-the-art open source medical LLMs in human evaluations of multi-turn conversations. Our trained models, instruction set, and source code are available at https://github.com/mbzuai-oryx/BiMediX.