2025
pdf
bib
abs
From Selection to Generation: A Survey of LLM-based Active Learning
Yu Xia
|
Subhojyoti Mukherjee
|
Zhouhang Xie
|
Junda Wu
|
Xintong Li
|
Ryan Aponte
|
Hanjia Lyu
|
Joe Barrow
|
Hongjie Chen
|
Franck Dernoncourt
|
Branislav Kveton
|
Tong Yu
|
Ruiyi Zhang
|
Jiuxiang Gu
|
Nesreen K. Ahmed
|
Yu Wang
|
Xiang Chen
|
Hanieh Deilamsalehy
|
Sungchul Kim
|
Zhengmian Hu
|
Yue Zhao
|
Nedim Lipka
|
Seunghyun Yoon
|
Ting-Hao Kenneth Huang
|
Zichao Wang
|
Puneet Mathur
|
Soumyabrata Pal
|
Koyel Mukherjee
|
Zhehao Zhang
|
Namyong Park
|
Thien Huu Nguyen
|
Jiebo Luo
|
Ryan A. Rossi
|
Julian McAuley
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Active Learning (AL) has been a powerful paradigm for improving model efficiency and performance by selecting the most informative data points for labeling and training. In recent active learning frameworks, Large Language Models (LLMs) have been employed not only for selection but also for generating entirely new data instances and providing more cost-effective annotations. Motivated by the increasing importance of high-quality data and efficient model training in the era of LLMs, we present a comprehensive survey on LLM-based Active Learning. We introduce an intuitive taxonomy that categorizes these techniques and discuss the transformative roles LLMs can play in the active learning loop. We further examine the impact of AL on LLM learning paradigms and its applications across various domains. Finally, we identify open challenges and propose future research directions. This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques and deploy them to new applications.
pdf
bib
abs
ChartLens: Fine-grained Visual Attribution in Charts
Manan Suri
|
Puneet Mathur
|
Nedim Lipka
|
Franck Dernoncourt
|
Ryan A. Rossi
|
Dinesh Manocha
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The growing capabilities of multimodal large language models (MLLMs) have advanced tasks like chart understanding. However, these models often suffer from hallucinations, where generated text sequences conflict with the provided visual data. To address this, we introduce Post-Hoc Visual Attribution for Charts, which identifies fine-grained chart elements that validate a given chart-associated response. We propose ChartLens, a novel chart attribution algorithm that uses segmentation-based techniques to identify chart objects and employs set-of-marks prompting with MLLMs for fine-grained visual attribution. Additionally, we present ChartVA-Eval, a benchmark with synthetic and real-world charts from diverse domains like finance, policy, and economics, featuring fine-grained attribution annotations. Our evaluations show that ChartLens improves fine-grained attributions by 26-66%.
pdf
bib
abs
Doc-React: Multi-page Heterogeneous Document Question-answering
Junda Wu
|
Yu Xia
|
Tong Yu
|
Xiang Chen
|
Sai Sree Harsha
|
Akash V Maharaj
|
Ruiyi Zhang
|
Victor Bursztyn
|
Sungchul Kim
|
Ryan A. Rossi
|
Julian McAuley
|
Yunyao Li
|
Ritwik Sinha
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Answering questions over multi-page, multimodal documents, including text and figures, is a critical challenge for applications that require answers to integrate information across multiple modalities and contextual dependencies. Existing methods, such as single-turn retrieval-augmented generation (RAG), struggle to retrieve fine-grained and contextually relevant information from large, heterogeneous documents, leading to suboptimal performance. Inspired by iterative frameworks like ReAct, which refine retrieval through feedback, we propose Doc-React, an adaptive iterative framework that balances information gain and uncertainty reduction at each step. Doc-React leverages InfoNCE-guided retrieval to approximate mutual information, enabling dynamic sub-query generation and refinement. A large language model (LLM) serves as both a judge and generator, providing structured feedback to iteratively improve retrieval. By combining mutual information optimization with entropy-aware selection, Doc-React systematically captures relevant multimodal content, achieving strong performance on complex QA tasks
pdf
bib
abs
Demystifying the Power of Large Language Models in Graph Generation
Yu Wang
|
Ryan A. Rossi
|
Namyong Park
|
Nesreen K. Ahmed
|
Danai Koutra
|
Franck Dernoncourt
|
Tyler Derr
Findings of the Association for Computational Linguistics: NAACL 2025
Despite the unprecedented success of applying Large Language Models (LLMs) to graph discriminative tasks such as node classification and link prediction, its potential for graph structure generation remains largely unexplored. To fill this crucial gap, this paper presents a systematic investigation into the capability of LLMs for graph structure generation. Specifically, we design prompts triggering LLMs to generate codes that optimize network properties by injecting domain expertise from network science. Since graphs in different domains exhibit unique structural properties captured by various metrics (e.g., clustering coefficient capturing triangles in social networks while squares reflecting road segments in transportation networks), we first evaluate the capability of LLMs to generate graphs satisfying each structural property in different domains. After that, we select the optimal property configurations and benchmark the graph structure generation performance of LLMs against established graph generative models across multiple domains. Our findings shed light on generating graph structures from an LLM perspective. Our code is publically available https://github.com/yuwvandy/LLM-GraphGen.
pdf
bib
abs
AD-LLM: Benchmarking Large Language Models for Anomaly Detection
Tiankai Yang
|
Yi Nian
|
Li Li
|
Ruiyao Xu
|
Yuangang Li
|
Jiaqi Li
|
Zhuo Xiao
|
Xiyang Hu
|
Ryan A. Rossi
|
Kaize Ding
|
Xia Hu
|
Yue Zhao
Findings of the Association for Computational Linguistics: ACL 2025
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs’ pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
pdf
bib
abs
Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Yongjia Lei
|
Haoyu Han
|
Ryan A. Rossi
|
Franck Dernoncourt
|
Nedim Lipka
|
Mahantesh M Halappanavar
|
Jiliang Tang
|
Yu Wang
Findings of the Association for Computational Linguistics: ACL 2025
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and existing hybrid methods even bypass structural retrieval entirely. To fill this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with inspiring insights, including imbalanced retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking.
pdf
bib
abs
GUI Agents: A Survey
Dang Nguyen
|
Jian Chen
|
Yu Wang
|
Gang Wu
|
Namyong Park
|
Zhengmian Hu
|
Hanjia Lyu
|
Junda Wu
|
Ryan Aponte
|
Yu Xia
|
Xintong Li
|
Jing Shi
|
Hongjie Chen
|
Viet Dac Lai
|
Zhouhang Xie
|
Sungchul Kim
|
Ruiyi Zhang
|
Tong Yu
|
Mehrab Tanjim
|
Nesreen K. Ahmed
|
Puneet Mathur
|
Seunghyun Yoon
|
Lina Yao
|
Branislav Kveton
|
Jihyung Kil
|
Thien Huu Nguyen
|
Trung Bui
|
Tianyi Zhou
|
Ryan A. Rossi
|
Franck Dernoncourt
Findings of the Association for Computational Linguistics: ACL 2025
Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.
pdf
bib
abs
Understanding Writing Assistants for Scientific Figure Captions: A Thematic Analysis
Ho Yin Sam Ng
|
Ting-Yao Hsu
|
Jiyoo Min
|
Sungchul Kim
|
Ryan A. Rossi
|
Tong Yu
|
Hyunggu Jung
|
Ting-Hao Kenneth Huang
Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)
Scientific figure captions are essential for communicating complex data but are often overlooked, leading to unclear or redundant descriptions. While many studies focus on generating captions as an ‘output’, little attention has been given to the writer’s process of crafting captions for scientific figures. This study examines how researchers use AI-generated captions to support caption writing. Through thematic analysis of interviews and video recordings with 18 participants from diverse disciplines, we identified four key themes: (1) integrating captions with figures and text, (2) bridging gaps between language proficiency and domain expertise, (3) leveraging multiple AI-generated suggestions, and (4) adapting to diverse writing norms. These findings provide actionable design insights for developing AI writing assistants that better support researchers in creating effective scientific figure captions.
pdf
bib
abs
Diversify-verify-adapt: Efficient and Robust Retrieval-Augmented Ambiguous Question Answering
Yeonjun In
|
Sungchul Kim
|
Ryan A. Rossi
|
Mehrab Tanjim
|
Tong Yu
|
Ritwik Sinha
|
Chanyoung Park
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The retrieval augmented generation (RAG) framework addresses an ambiguity in user queries in QA systems by retrieving passages that cover all plausible interpretations and generating comprehensive responses based on the passages. However, our preliminary studies reveal that a single retrieval process often suffers from low-quality results, as the retrieved passages frequently fail to capture all plausible interpretations. Although the iterative RAG approach has been proposed to address this problem, it comes at the cost of significantly reduced efficiency. To address these issues, we propose the diversify-verify-adapt (DIVA) framework. DIVA first diversifies the retrieved passages to encompass diverse interpretations. Subsequently, DIVA verifies the quality of the passages and adapts the most suitable approach tailored to their quality. This approach improves the QA systems’ accuracy and robustness by handling low quality retrieval issue in ambiguous questions, while enhancing efficiency.
pdf
bib
abs
Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval
Yu Xia
|
Junda Wu
|
Sungchul Kim
|
Tong Yu
|
Ryan A. Rossi
|
Haoliang Wang
|
Julian McAuley
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) have been used to generate query expansions augmenting original queries for improving information search. Recent studies also explore providing LLMs with initial retrieval results to generate query expansions more grounded to document corpus. However, these methods mostly focus on enhancing textual similarities between search queries and target documents, overlooking document relations. For queries like “Find me a highly rated camera for wildlife photography compatible with my Nikon F-Mount lenses”, existing methods may generate expansions that are semantically similar but structurally unrelated to user intents. To handle such semi-structured queries with both textual and relational requirements, in this paper we propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG). To further address the limitation of entity-based scoring in existing KG-based methods, we leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR). Extensive experiments on three datasets of diverse domains show the advantages of our method compared against state-of-the-art baselines on textual and relational semi-structured retrieval.
pdf
bib
abs
VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation
Manan Suri
|
Puneet Mathur
|
Franck Dernoncourt
|
Kanika Goswami
|
Ryan A. Rossi
|
Dinesh Manocha
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings with rich multimodal content, including tables, charts, and presentation slides. We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG, combining robust visual retrieval capabilities with sophisticated linguistic reasoning. VisDoMRAG employs a multi-step reasoning process encompassing evidence curation and chain-of-thought reasoning for concurrent textual and visual RAG pipelines. A key novelty of VisDoMRAG is its consistency-constrained modality fusion mechanism, which aligns the reasoning processes across modalities at inference time to produce a coherent final answer. This leads to enhanced accuracy in scenarios where critical information is distributed across modalities and improved answer verifiability through implicit context attribution. Through extensive experiments involving open-source and proprietary large language models, we benchmark state-of-the-art document QA methods on VisDoMBench. Extensive results show that VisDoMRAG outperforms unimodal and long-context LLM baselines for end-to-end multimodal document QA by 12-20%.
pdf
bib
abs
Self-Debiasing Large Language Models: Zero-Shot Recognition and Reduction of Stereotypes
Isabel O. Gallegos
|
Ryan Aponte
|
Ryan A. Rossi
|
Joe Barrow
|
Mehrab Tanjim
|
Tong Yu
|
Hanieh Deilamsalehy
|
Ruiyi Zhang
|
Sungchul Kim
|
Franck Dernoncourt
|
Nedim Lipka
|
Deonna Owens
|
Jiuxiang Gu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
Large language models (LLMs) have shown remarkable advances in language generation and understanding but are also prone to exhibiting harmful social biases. While recognition of these behaviors has generated an abundance of bias mitigation techniques, most require modifications to the training data, model parameters, or decoding strategy, which may be infeasible without access to a trainable model. In this work, we leverage the zero-shot capabilities of LLMs to reduce stereotyping in a technique we introduce as zero-shot self-debiasing. With two approaches, self-debiasing via explanation and self-debiasing via reprompting, we show that self-debiasing can significantly reduce the degree of stereotyping across nine different social groups while relying only on the LLM itself and a simple prompt, with explanations correctly identifying invalid assumptions and reprompting delivering the greatest reductions in bias. We hope this work opens inquiry into other zero-shot techniques for bias mitigation.
pdf
bib
abs
Persona-SQ: A Personalized Suggested Question Generation Framework For Real-world Documents
Zihao Lin
|
Zichao Wang
|
Yuanting Pan
|
Varun Manjunatha
|
Ryan A. Rossi
|
Angela Lau
|
Lifu Huang
|
Tong Sun
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
Suggested questions (SQs) provide an effective initial interface for users to engage with their documents in AI-powered reading applications. In practical reading sessions, users have diverse backgrounds and reading goals, yet current SQ features typically ignore such user information, resulting in homogeneous or ineffective questions. We introduce a pipeline that generates personalized SQs by incorporating reader profiles (professions and reading goals) and demonstrate its utility in two ways: 1) as an improved SQ generation pipeline that produces higher quality and more diverse questions compared to current baselines, and 2) as a data generator to fine-tune extremely small models that perform competitively with much larger models on SQ generation. Our approach can not only serve as a drop-in replacement in current SQ systems to immediately improve their performance but also help develop on-device SQ models that can run locally to deliver fast and private SQ experience.
pdf
bib
abs
Document Attribution: Examining Citation Relationships using Large Language Models
Vipula Rawte
|
Ryan A. Rossi
|
Franck Dernoncourt
|
Nedim Lipka
Proceedings of the Fifth Workshop on Scholarly Document Processing (SDP 2025)
As Large Language Models (LLMs) are increasingly applied to document-based tasks - such as document summarization, question answering, and information extraction - where user requirements focus on retrieving information from provided documents rather than relying on the model’s parametric knowledge, ensuring the trustworthiness and interpretability of these systems has become a critical concern. A central approach to addressing this challenge is attribution, which involves tracing the generated outputs back to their source documents. However, since LLMs can produce inaccurate or imprecise responses, it is crucial to assess the reliability of these citations.To tackle this, our work proposes two techniques. (1) A zero-shot approach that frames attribution as a straightforward textual entailment task. Our method using flan-ul2 demonstrates an improvement of 0.27% and 2.4% over the best baseline of ID and OOD sets of AttributionBench (CITATION), respectively. (2) We also explore the role of the attention mechanism in enhancing the attribution process. Using a smaller LLM, flan-t5-small, the F1 scores outperform the baseline across almost all layers except layer 4 and layers 8 through 11.
2024
pdf
bib
abs
Bias and Fairness in Large Language Models: A Survey
Isabel O. Gallegos
|
Ryan A. Rossi
|
Joe Barrow
|
Md Mehrab Tanjim
|
Sungchul Kim
|
Franck Dernoncourt
|
Tong Yu
|
Ruiyi Zhang
|
Nesreen K. Ahmed
Computational Linguistics, Volume 50, Issue 3 - September 2024
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this article, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely, metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
pdf
bib
abs
Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs
Mihir Parmar
|
Hanieh Deilamsalehy
|
Franck Dernoncourt
|
Seunghyun Yoon
|
Ryan A. Rossi
|
Trung Bui
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Extractive summarization plays a pivotal role in natural language processing due to its wide-range applications in summarizing diverse content efficiently, while also being faithful to the original content. Despite significant advancement achieved in extractive summarization by Large Language Models (LLMs), these summaries frequently exhibit incoherence. An important aspect of the coherent summary is its readability for intended users. Although there have been many datasets and benchmarks proposed for creating coherent extractive summaries, none of them currently incorporate user intent to improve coherence in extractive summarization. Motivated by this, we propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback, offering valuable insights into how to improve coherence in extractive summaries. We utilize this dataset for aligning LLMs through supervised fine-tuning with natural language human feedback to enhance the coherence of their generated summaries. Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (~10% Rouge-L) in terms of producing coherent summaries. We further utilize human feedback to benchmark results over instruction-tuned models such as FLAN-T5 which resulted in several interesting findings.
pdf
bib
abs
PDFTriage: Question Answering over Long, Structured Documents
Jon Saad-Falcon
|
Joe Barrow
|
Alexa Siu
|
Ani Nenkova
|
Seunghyun Yoon
|
Ryan A. Rossi
|
Franck Dernoncourt
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user’s mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA. Our code and datasets will be released soon on Github.
pdf
bib
abs
CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages
Thuat Nguyen
|
Chien Van Nguyen
|
Viet Dac Lai
|
Hieu Man
|
Nghia Trung Ngo
|
Franck Dernoncourt
|
Ryan A. Rossi
|
Thien Huu Nguyen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Extensive training datasets represent one of the important factors for the impressive learning capabilities of large language models (LLMs). However, these training datasets for current LLMs, especially the recent state-of-the-art models, are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is released in Hugging Face facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.