2025
pdf
bib
abs
Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models
Fei Wang
|
Xingchen Wan
|
Ruoxi Sun
|
Jiefeng Chen
|
Sercan O Arik
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval augmented generation (RAG), while effectively integrating external knowledge to address the inherent limitations of large language models (LLMs), can be hindered by imperfect retrieval that contain irrelevant, misleading, or even malicious information. Previous studies have rarely connected the behavior of RAG through joint analysis, particularly regarding error propagation coming from imperfect retrieval and potential conflicts between LLMs’ internal knowledge and external sources. Through comprehensive and controlled analyses under realistic conditions, we find that imperfect retrieval augmentation is inevitable, common, and harmful. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome imperfect retrieval in the post-retrieval stage of RAG. To address this, we propose Astute RAG, a novel RAG approach designed to be resilient to imperfect retrieval augmentation. It adaptively elicits essential information from LLMs’ internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments with Gemini and Claude demonstrate the superior performance of Astute RAG compared to previous robustness-enhanced RAG approaches. Specifically, Astute RAG is the only RAG method that achieves performance comparable to or even surpassing conventional use of LLMs under the worst-case scenario. Further analysis reveals the effectiveness of Astute RAG in resolving knowledge conflicts, thereby improving the trustworthiness of RAG.
pdf
bib
abs
Data-Centric Improvements for Enhancing Multi-Modal Understanding in Spoken Conversation Modeling
Maximillian Chen
|
Ruoxi Sun
|
Sercan O Arik
Findings of the Association for Computational Linguistics: ACL 2025
Conversational assistants are increasingly popular across diverse real-world applications, highlighting the need for advanced multimodal speech modeling. Speech, as a natural mode of communication, encodes rich user-specific characteristics such as speaking rate and pitch, making it critical for effective interaction. Our work introduces a data-centric customization approach for efficiently enhancing multimodal understanding in conversational speech modeling. Central to our contributions is a novel multi-task learning paradigm that involves designing auxiliary tasks to utilize a small amount of speech data. Our approach achieves state-of-the-art performance on the Spoken-SQuAD benchmark, using only 10% of the training data with open-weight models, establishing a robust and efficient framework for audio-centric conversational modeling. We also introduce ASK-QA, the first dataset for multi-turn spoken dialogue with ambiguous user requests and dynamic evaluation inputs.
2024
pdf
bib
abs
Effective Large Language Model Adaptation for Improved Grounding and Citation Generation
Xi Ye
|
Ruoxi Sun
|
Sercan Arik
|
Tomas Pfister
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) have achieved remarkable advancements in natural language understanding and generation. However, one major issue towards their widespread deployment in the real world is that they can generate “hallucinated” answers that are not factual.Towards this end, this paper focuses on improving LLMs by grounding their responses in retrieved passages and by providing citations. We propose a new framework, AGREE, Adaptation for GRounding EnhancEment, that improves the grounding from a holistic perspective. Our framework tunes LLMs to self-ground the claims in their responses and provide accurate citations to retrieved documents. This tuning on top of the pre-trained LLMs requires well-grounded responses (with citations) for paired queries, for which we introduce a method that can automatically construct such data from unlabeled queries. The self-grounding capability of tuned LLMs further grants them a test-time adaptation (TTA) capability that can actively retrieve passages to support the claims that have not been grounded, which iteratively improves the responses of LLMs. Across five datasets and two LLMs, our results show that the proposed tuning-based framework generates superior grounded responses with more accurate citations compared to prompting-based approaches and post-hoc citing-based approaches.
2023
pdf
bib
abs
Universal Self-Adaptive Prompting
Xingchen Wan
|
Ruoxi Sun
|
Hootan Nakhost
|
Hanjun Dai
|
Julian Eisenschlos
|
Sercan Arik
|
Tomas Pfister
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
A hallmark of modern large language models (LLMs) is their impressive general zero-shot and few-shot abilities, often elicited through in-context learning (ICL) via prompting. However, while highly coveted and being the most general, zero-shot performances in LLMs are still typically weaker due to the lack of guidance and the difficulty of applying existing automatic prompt design methods in general tasks when ground-truth labels are unavailable. In this study, we address this by presenting Universal Self-Adaptive Prompting (USP), an automatic prompt design approach specifically tailored for zero-shot learning (while compatible with few-shot). Requiring only a small amount of unlabeled data and an inference-only LLM, USP is highly versatile: to achieve universal prompting, USP categorizes a possible NLP task into one of the three possible task types and then uses a corresponding selector to select the most suitable queries and zero-shot model-generated responses as pseudo-demonstrations, thereby generalizing ICL to the zero-shot setup in a fully automated way. We evaluate USP with PaLM and PaLM 2 models and demonstrate performances that are considerably stronger than standard zero-shot baselines and often comparable to or even superior to few-shot baselines across more than 40 natural language understanding, natural language generation, and reasoning tasks.
pdf
bib
abs
Better Zero-Shot Reasoning with Self-Adaptive Prompting
Xingchen Wan
|
Ruoxi Sun
|
Hanjun Dai
|
Sercan Arik
|
Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2023
Modern large language models (LLMs) have demonstrated impressive capabilities at sophisticated tasks, often through step-by-step reasoning similar to humans. This is made possible by their strong few- and zero-shot abilities – they can effectively learn from a handful of handcrafted, completed responses (“in-context examples”), or are prompted to reason spontaneously through specially designed triggers. Nonetheless, some limitations have been observed. First, performance in the few-shot setting is sensitive to the choice of the examples, whose design requires significant human effort. Moreover, given the diverse downstream tasks of LLMs, it may be difficult or laborious to handcraft per-task labels. Second, while the zero-shot setting does not require handcrafting, its performance is limited due to the lack of guidance to the LLMs. To address these limitations, we propose Consistency-based Self-adaptive Prompting (COSP), a novel prompt design method for LLMs. Requiring neither handcrafted responses nor ground-truth labels, COSP selects and builds the set of examples from the LLM zero-shot outputs via carefully designed criteria combining consistency, diversity and repetition. In the zero-shot setting for three different LLMs, we show that using only LLM predictions, COSP significantly improves performance up to 15% compared to zero-shot baselines and matches or exceeds few-shot baselines at a range of reasoning tasks.
pdf
bib
abs
SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
Ruoxi Sun
|
Sercan Arik
|
Rajarishi Sinha
|
Hootan Nakhost
|
Hanjun Dai
|
Pengcheng Yin
|
Tomas Pfister
Findings of the Association for Computational Linguistics: EMNLP 2023
Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose “SQLPrompt”, tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution-based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs (“MixPrompt”) and foundation models (“MixLLMs”). We show that SQLPrompt outperforms previous approaches for in-context learning with zero labeled data by a large margin, closing the gap with finetuning state-of-the-art with thousands of labeled data.