Raymond Fok


2025

pdf bib
Literature-Grounded Novelty Assessment of Scientific Ideas
Simra Shahid | Marissa Radensky | Raymond Fok | Pao Siangliulue | Daniel S Weld | Tom Hope
Proceedings of the Fifth Workshop on Scholarly Document Processing (SDP 2025)

Automated scientific idea generation systems have made remarkable progress, yet the automatic evaluation of idea novelty remains a critical and underexplored challenge. Manual evaluation of novelty through literature review is labor-intensive, prone to error due to subjectivity, and impractical at scale. To address these issues, we propose the **Idea Novelty Checker**, an LLM-based retrieval-augmented generation (RAG) framework that leverages a two-stage retrieve-then-rerank approach. The Idea Novelty Checker first collects a broad set of relevant papers using keyword and snippet-based retrieval, then refines this collection through embedding-based filtering followed by facet-based LLM re-ranking. It incorporates expert-labeled examples to guide the system in comparing papers for novelty evaluation and in generating literature-grounded reasoning. Our extensive experiments demonstrate that our novelty checker achieves approximately 13% higher agreement than existing approaches. Ablation studies further showcases the importance of the facet-based re-ranker in identifying the most relevant literature for novelty evaluation.

2024

pdf bib
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
Benjamin Newman | Yoonjoo Lee | Aakanksha Naik | Pao Siangliulue | Raymond Fok | Juho Kim | Daniel S Weld | Joseph Chee Chang | Kyle Lo
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

When conducting literature reviews, scientists often create literature review tables—tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs’ abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.

2023

pdf bib
A Question Answering Framework for Decontextualizing User-facing Snippets from Scientific Documents
Benjamin Newman | Luca Soldaini | Raymond Fok | Arman Cohan | Kyle Lo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many real-world applications (e.g., note taking, search) require extracting a sentence or paragraph from a document and showing that snippet to a human outside of the source document. Yet, users may find snippets difficult to understand as they lack context from the original document. In this work, we use language models to rewrite snippets from scientific documents to be read on their own. First, we define the requirements and challenges for this user-facing decontextualization task, such as clarifying where edits occur and handling references to other documents. Second, we propose a framework that decomposes the task into three stages: question generation, question answering, and rewriting. Using this framework, we collect gold decontextualizations from experienced scientific article readers. We then conduct a range of experiments across state-of-the-art commercial and open-source language models to identify how to best provide missing-but-relevant information to models for our task. Finally, we develop QaDecontext, a simple prompting strategy inspired by our framework that improves over end-to-end prompting. We conclude with analysis that finds, while rewriting is easy, question generation and answering remain challenging for today’s models.