Riyaz Bhat


2023

pdf
PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development
Avi Sil | Jaydeep Sen | Bhavani Iyer | Martin Franz | Kshitij Fadnis | Mihaela Bornea | Sara Rosenthal | Scott McCarley | Rong Zhang | Vishwajeet Kumar | Yulong Li | Md Arafat Sultan | Riyaz Bhat | Juergen Bross | Radu Florian | Salim Roukos
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The field of Question Answering (QA) has made remarkable progress in recent years, thanks to the advent of large pre-trained language models, newer realistic benchmark datasets with leaderboards, and novel algorithms for key components such as retrievers and readers. In this paper, we introduce PrimeQA: a one-stop and open-source QA repository with an aim to democratize QA research and facilitate easy replication of state-of-the-art (SOTA) QA methods. PrimeQA supports core QA functionalities like retrieval and reading comprehension as well as auxiliary capabilities such as question generation. It has been designed as an end-to-end toolkit for various use cases: building front-end applications, replicating SOTA methods on public benchmarks, and expanding pre-existing methods. PrimeQA is available at: https://github.com/primeqa.

pdf
Semi-Structured Object Sequence Encoders
Rudra Murthy | Riyaz Bhat | Chulaka Gunasekara | Siva Patel | Hui Wan | Tejas Dhamecha | Danish Contractor | Marina Danilevsky
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper we explore the task of modeling semi-structured object sequences; in particular, we focus our attention on the problem of developing a structure-aware input representation for such sequences. Examples of such data include user activity on websites, machine logs, and many others. This type of data is often represented as a sequence of sets of key-value pairs over time and can present modeling challenges due to an ever-increasing sequence length. We propose a two-part approach, which first considers each key independently and encodes a representation of its values over time; we then self-attend over these value-aware key representations to accomplish a downstream task. This allows us to operate on longer object sequences than existing methods. We introduce a novel shared-attention-head architecture between the two modules and present an innovative training schedule that interleaves the training of both modules with shared weights for some attention heads. Our experiments on multiple prediction tasks using real-world data demonstrate that our approach outperforms a unified network with hierarchical encoding, as well as other methods including a record-centric representation and a flattened representation of the sequence.

pdf
Prompting with Pseudo-Code Instructions
Mayank Mishra | Prince Kumar | Riyaz Bhat | Rudra Murthy | Danish Contractor | Srikanth Tamilselvam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models (LLM). Given the inherent ambiguity present in natural language, it is intuitive to consider the possible advantages of prompting with less ambiguous prompt styles, like pseudo-code. In this paper, we explore if prompting via pseudo-code instructions helps improve the performance of pre-trained language models. We manually create a dataset of pseudo-code prompts for 132 different tasks spanning classification, QA, and generative language tasks, sourced from the Super-NaturalInstructions dataset. Using these prompts along with their counterparts in natural language, we study their performance on two LLM families - BLOOM, CodeGen. Our experiments show that using pseudo-code instructions leads to better results, with an average increase (absolute) of 7-16 points in F1 scores for classification tasks and an improvement (relative) of 12-38% in aggregate ROUGE-L scores across all tasks. We include detailed ablation studies which indicate that code comments, docstrings, and the structural clues encoded in pseudo-code all contribute towards the improvement in performance. To the best of our knowledge, our work is the first to demonstrate how pseudo-code prompts can be helpful in improving the performance of pre-trained LMs.

2022

pdf
DocInfer: Document-level Natural Language Inference using Optimal Evidence Selection
Puneet Mathur | Gautam Kunapuli | Riyaz Bhat | Manish Shrivastava | Dinesh Manocha | Maneesh Singh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present DocInfer - a novel, end-to-end Document-level Natural Language Inference model that builds a hierarchical document graph enriched through inter-sentence relations (topical, entity-based, concept-based), performs paragraph pruning using the novel SubGraph Pooling layer, followed by optimal evidence selection based on REINFORCE algorithm to identify the most important context sentences for a given hypothesis. Our evidence selection mechanism allows it to transcend the input length limitation of modern BERT-like Transformer models while presenting the entire evidence together for inferential reasoning. We show this is an important property needed to reason on large documents where the evidence may be fragmented and located arbitrarily far from each other. Extensive experiments on popular corpora - DocNLI, ContractNLI, and ConTRoL datasets, and our new proposed dataset called CaseHoldNLI on the task of legal judicial reasoning, demonstrate significant performance gains of 8-12% over SOTA methods. Our ablation studies validate the impact of our model. Performance improvement of 3-6% on annotation-scarce downstream tasks of fact verification, multiple-choice QA, and contract clause retrieval demonstrates the usefulness of DocInfer beyond primary NLI tasks.