Audio-Language Models (ALMs) have demonstrated remarkable performance in zero-shot audio classification. In this paper, we introduce PAT (Parameter-free Audio-Text aligner), a simple and training-free method aimed at boosting zero-shot audio classification performance of CLAP-like ALMs. To achieve this, we propose to improve the cross-modal interaction between audio and language modalities by enhancing the representations for both modalities using mutual feedback. Precisely, to enhance textual representations, we propose a prompt ensemble algorithm that automatically selects and combines the most relevant prompts from a datastore with a large pool of handcrafted prompts and weighs them according to their relevance to the audio. On the other hand, to enhance audio representations, we reweigh the frame-level audio features based on the enhanced textual information. Our proposed method does not require any additional modules or parameters and can be used with any existing CLAP-like ALM to improve zero-shot audio classification performance. We experiment across 18 diverse benchmark datasets and 6 ALMs and show that the PAT outperforms vanilla zero-shot evaluation with significant margins of 0.42%-27.0%. Additionally, we demonstrate that PAT maintains robust performance even when input audio is degraded by varying levels of noise. We make our code publicly available.
Open-vocabulary audio language models (ALMs), like Contrastive Language Audio Pretraining (CLAP), represent a promising new paradigm for audio-text retrieval using natural language queries. In this paper, for the first time, we perform controlled experiments on various benchmarks to show that existing ALMs struggle to generalize to linguistic variations in textual queries. To address this issue, we propose RobustCLAP, a novel and compute-efficient technique to learn audio-language representations agnostic to linguistic variations. Specifically, we reformulate the contrastive loss used in CLAP architectures by introducing a multi-view contrastive learning objective, where paraphrases are treated as different views of the same audio scene and use this for training. Our proposed approach improves the text-to-audio retrieval performance of CLAP by 0.8%-13% across benchmarks and enhances robustness to linguistic variation. We make our code publicly available
In this paper, we present EH-MAM (Easy-to-Hard adaptive Masked Acoustic Modeling), a novel self-supervised learning approach for speech representation learning. In contrast to the prior methods that use random masking schemes for Masked Acoustic Modeling (MAM), we introduce a novel selective and adaptive masking strategy. Specifically, during SSL training, we progressively introduce harder regions to the model for reconstruction. Our approach automatically selects hard regions and is built on the observation that the reconstruction loss of individual frames in MAM can provide natural signals to judge the difficulty of solving the MAM pre-text task for that frame. To identify these hard regions, we employ a teacher model that first predicts the frame-wise losses and then decides which frames to mask. By learning to create challenging problems, such as identifying harder frames and solving them simultaneously, the model is able to learn more effective representations and thereby acquire a more comprehensive understanding of the speech. Quantitatively, EH-MAM outperforms several state-of-the-art baselines across various low-resource speech recognition and SUPERB benchmarks by 5%-10%. Additionally, we conduct a thorough analysis to show that the regions masked by EH-MAM effectively capture useful context across speech frames.