Rachit Bansal


2022

pdf
CoSe-Co: Text Conditioned Generative CommonSense Contextualizer
Rachit Bansal | Milan Aggarwal | Sumit Bhatia | Jivat Kaur | Balaji Krishnamurthy
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained Language Models (PTLMs) have been shown to perform well on natural language tasks. Many prior works have leveraged structured commonsense present in the form of entities linked through labeled relations in Knowledge Graphs (KGs) to assist PTLMs. Retrieval approaches use KG as a separate static module which limits coverage since KGs contain finite knowledge. Generative methods train PTLMs on KG triples to improve the scale at which knowledge can be obtained. However, training on symbolic KG entities limits their applicability in tasks involving natural language text where they ignore overall context. To mitigate this, we propose a CommonSense Contextualizer (CoSe-Co) conditioned on sentences as input to make it generically usable in tasks for generating knowledge relevant to the overall context of input text. To train CoSe-Co, we propose a novel dataset comprising of sentence and commonsense knowledge pairs. The knowledge inferred by CoSe-Co is diverse and contain novel entities not present in the underlying KG. We augment generated knowledge in Multi-Choice QA and Open-ended CommonSense Reasoning tasks leading to improvements over current best methods on CSQA, ARC, QASC and OBQA datasets. We also demonstrate its applicability in improving performance of a baseline model for paraphrase generation task.

pdf
LM-CORE: Language Models with Contextually Relevant External Knowledge
Jivat Kaur | Sumit Bhatia | Milan Aggarwal | Rachit Bansal | Balaji Krishnamurthy
Findings of the Association for Computational Linguistics: NAACL 2022

Large transformer-based pre-trained language models have achieved impressive performance on a variety of knowledge-intensive tasks and can capture factual knowledge in their parameters. We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements. We posit that a more efficient alternative is to provide explicit access to contextually relevant structured knowledge to the model and train it to use that knowledge. We present LM-CORE – a general framework to achieve this– that allows decoupling of the language model training from the external knowledge source and allows the latter to be updated without affecting the already trained model. Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks; can effectively handle knowledge updates; and performs well on two downstream tasks. We also present a thorough error analysis highlighting the successes and failures of LM-CORE. Our code and model checkpoints are publicly available.

pdf
Evaluating Explanations: How Much Do Explanations from the Teacher Aid Students?
Danish Pruthi | Rachit Bansal | Bhuwan Dhingra | Livio Baldini Soares | Michael Collins | Zachary C. Lipton | Graham Neubig | William W. Cohen
Transactions of the Association for Computational Linguistics, Volume 10

While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared with prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies.1

2021

pdf
How Low is Too Low? A Computational Perspective on Extremely Low-Resource Languages
Rachit Bansal | Himanshu Choudhary | Ravneet Punia | Niko Schenk | Émilie Pagé-Perron | Jacob Dahl
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Despite the recent advancements of attention-based deep learning architectures across a majority of Natural Language Processing tasks, their application remains limited in a low-resource setting because of a lack of pre-trained models for such languages. In this study, we make the first attempt to investigate the challenges of adapting these techniques to an extremely low-resource language – Sumerian cuneiform – one of the world’s oldest written languages attested from at least the beginning of the 3rd millennium BC. Specifically, we introduce the first cross-lingual information extraction pipeline for Sumerian, which includes part-of-speech tagging, named entity recognition, and machine translation. We introduce InterpretLR, an interpretability toolkit for low-resource NLP and use it alongside human evaluations to gauge the trained models. Notably, all our techniques and most components of our pipeline can be generalised to any low-resource language. We publicly release all our implementations including a novel data set with domain-specific pre-processing to promote further research in this domain.