Qiming Li
2025
CLAIM: Mitigating Multilingual Object Hallucination in Large Vision-Language Models with Cross-Lingual Attention Intervention
Zekai Ye
|
Qiming Li
|
Xiaocheng Feng
|
Libo Qin
|
Yichong Huang
|
Baohang Li
|
Kui Jiang
|
Yang Xiang
|
Zhirui Zhang
|
Yunfei Lu
|
Duyu Tang
|
Dandan Tu
|
Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Vision-Language Models (LVLMs) have demonstrated impressive multimodal abilities but remain prone to multilingual object hallucination, with a higher likelihood of generating responses inconsistent with the visual input when utilizing queries in non-English languages compared to English. Most existing approaches to address these rely on pretraining or fine-tuning, which are resource-intensive. In this paper, inspired by observing the disparities in cross-modal attention patterns across languages, we propose Cross-Lingual Attention Intervention for Mitigating multilingual object hallucination (CLAIM) in LVLMs, a novel near training-free method by aligning attention patterns. CLAIM first identifies language-specific cross-modal attention heads, then estimates language shift vectors from English to the target language, and finally intervenes in the attention outputs during inference to facilitate cross-lingual visual perception capability alignment. Extensive experiments demonstrate that CLAIM achieves an average improvement of 13.56% (up to 30% in Spanish) on the POPE and 21.75% on the hallucination subsets of the MME benchmark across various languages. Further analysis reveals that multilingual attention divergence is most prominent in intermediate layers, highlighting their critical role in multilingual scenarios.
2024
Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models
Weihong Zhong
|
Xiaocheng Feng
|
Liang Zhao
|
Qiming Li
|
Lei Huang
|
Yuxuan Gu
|
Weitao Ma
|
Yuan Xu
|
Bing Qin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs’ subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called \\textitMMHalSnowball to evaluate LVLMs’ behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least 31\\%, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this Multimodal Hallucination Snowballing. To mitigate this issue, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than 24\\% of the snowballed multimodal hallucination while maintaining capabilities.
Search
Fix author
Co-authors
- Xiaocheng Feng 2
- Bing Qin (秦兵) 2
- Yuxuan Gu 1
- Lei Huang 1
- Yichong Huang 1
- show all...
Venues
- acl2