2025
pdf
bib
abs
MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
Xiaqiang Tang
|
Qiang Gao
|
Jian Li
|
Nan Du
|
Qi Li
|
Sihong Xie
Proceedings of the 31st International Conference on Computational Linguistics
Retrieval Augmented Generation (RAG) has proven to be highly effective in boosting the generative performance of language model in knowledge-intensive tasks. However, existing RAG framework either indiscriminately perform retrieval or rely on rigid single-label classifiers to select retrieval methods, leading to inefficiencies and suboptimal performance across queries of varying complexity. To address these challenges, we propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity. To address these challenges, we propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity. Our approach leverages a multi-armed bandit algorithm, which treats each retrieval method as a distinct “arm” and adapts the selection process by balancing exploration and exploitation. Additionally, we introduce a dynamic reward function that balances accuracy and efficiency, penalizing methods that require more retrieval steps, even if they lead to a correct result. Our method achieves new state of the art results on multiple single-hop and multi-hop datasets while reducing retrieval costs. Our code are available at https://github.com/FUTUREEEEEE/MBA.
pdf
bib
abs
Re-Examine Distantly Supervised NER: A New Benchmark and a Simple Approach
Yuepei Li
|
Kang Zhou
|
Qiao Qiao
|
Qing Wang
|
Qi Li
Proceedings of the 31st International Conference on Computational Linguistics
Distantly-Supervised Named Entity Recognition (DS-NER) uses knowledge bases or dictionaries for annotations, reducing manual efforts but rely on large human labeled validation set. In this paper, we introduce a real-life DS-NER dataset, QTL, where the training data is annotated using domain dictionaries and the test data is annotated by domain experts. This dataset has a small validation set, reflecting real-life scenarios. Existing DS-NER approaches fail when applied to QTL, which motivate us to re-examine existing DS-NER approaches. We found that many of them rely on large validation sets and some used test set for tuning inappropriately. To solve this issue, we proposed a new approach, token-level Curriculum-based Positive-Unlabeled Learning (CuPUL), which uses curriculum learning to order training samples from easy to hard. This method stabilizes training, making it robust and effective on small validation sets. CuPUL also addresses false negative issues using the Positive-Unlabeled learning paradigm, demonstrating improved performance in real-life applications.
2024
pdf
bib
abs
GenDecider: Integrating “None of the Candidates” Judgments in Zero-Shot Entity Linking Re-ranking
Kang Zhou
|
Yuepei Li
|
Qing Wang
|
Qiao Qiao
|
Qi Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
We introduce GenDecider, a novel re-ranking approach for Zero-Shot Entity Linking (ZSEL), built on the Llama model. It innovatively detects scenarios where the correct entity is not among the retrieved candidates, a common oversight in existing re-ranking methods. By autoregressively generating outputs based on the context of the entity mention and the candidate entities, GenDecider significantly enhances disambiguation, improving the accuracy and reliability of ZSEL systems, as demonstrated on the benchmark ZESHEL dataset. Our code is available at https://github.com/kangISU/GenDecider.
2023
pdf
bib
abs
Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts
Mohna Chakraborty
|
Adithya Kulkarni
|
Qi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent studies have demonstrated that natural-language prompts can help to leverage the knowledge learned by pre-trained language models for the binary sentence-level sentiment classification task. Specifically, these methods utilize few-shot learning settings to fine-tune the sentiment classification model using manual or automatically generated prompts. However, the performance of these methods is sensitive to the perturbations of the utilized prompts. Furthermore, these methods depend on a few labeled instances for automatic prompt generation and prompt ranking. This study aims to find high-quality prompts for the given task in a zero-shot setting. Given a base prompt, our proposed approach automatically generates multiple prompts similar to the base prompt employing positional, reasoning, and paraphrasing techniques and then ranks the prompts using a novel metric. We empirically demonstrate that the top-ranked prompts are high-quality and significantly outperform the base prompt and the prompts generated using few-shot learning for the binary sentence-level sentiment classification task.
pdf
bib
abs
Improving Unsupervised Relation Extraction by Augmenting Diverse Sentence Pairs
Qing Wang
|
Kang Zhou
|
Qiao Qiao
|
Yuepei Li
|
Qi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Unsupervised relation extraction (URE) aims to extract relations between named entities from raw text without requiring manual annotations or pre-existing knowledge bases. In recent studies of URE, researchers put a notable emphasis on contrastive learning strategies for acquiring relation representations. However, these studies often overlook two important aspects: the inclusion of diverse positive pairs for contrastive learning and the exploration of appropriate loss functions. In this paper, we propose AugURE with both within-sentence pairs augmentation and augmentation through cross-sentence pairs extraction to increase the diversity of positive pairs and strengthen the discriminative power of contrastive learning. We also identify the limitation of noise-contrastive estimation (NCE) loss for relation representation learning and propose to apply margin loss for sentence pairs. Experiments on NYT-FB and TACRED datasets demonstrate that the proposed relation representation learning and a simple K-Means clustering achieves state-of-the-art performance.
pdf
bib
abs
CoRec: An Easy Approach for Coordination Recognition
Qing Wang
|
Haojie Jia
|
Wenfei Song
|
Qi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In this paper, we observe and address the challenges of the coordination recognition task. Most existing methods rely on syntactic parsers to identify the coordinators in a sentence and detect the coordination boundaries. However, state-of-the-art syntactic parsers are slow and suffer from errors, especially for long and complicated sentences. To better solve the problems, we propose a pipeline model COordination RECognizer (CoRec). It consists of two components: coordinator identifier and conjunct boundary detector. The experimental results on datasets from various domains demonstrate the effectiveness and efficiency of the proposed method. Further experiments show that CoRec positively impacts downstream tasks, improving the yield of state-of-the-art Open IE models.
pdf
bib
abs
ScdNER: Span-Based Consistency-Aware Document-Level Named Entity Recognition
Ying Wei
|
Qi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Document-level NER approaches use global information via word-based key-value memory for accurate and consistent predictions. However, such global information on word level can introduce noise when the same word appears in different token sequences and has different labels. This work proposes a two-stage document-level NER model, ScdNER, for more accurate and consistent predictions via adaptive span-level global feature fusion. In the first stage, ScdNER trains a binary classifier to predict if a token sequence is an entity with a probability. Via a span-based key-value memory, the probabilities are further used to obtain the entity’s global features with reduced impact of non-entity sequences. The second stage predicts the entity types using a gate mechanism to balance its local and global information, leading to adaptive global feature fusion. Experiments on benchmark datasets from scientific, biomedical, and general domains show the effectiveness of the proposed methods.
2022
pdf
bib
abs
Distantly Supervised Named Entity Recognition via Confidence-Based Multi-Class Positive and Unlabeled Learning
Kang Zhou
|
Yuepei Li
|
Qi Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we study the named entity recognition (NER) problem under distant supervision. Due to the incompleteness of the external dictionaries and/or knowledge bases, such distantly annotated training data usually suffer from a high false negative rate. To this end, we formulate the Distantly Supervised NER (DS-NER) problem via Multi-class Positive and Unlabeled (MPU) learning and propose a theoretically and practically novel CONFidence-based MPU (Conf-MPU) approach. To handle the incomplete annotations, Conf-MPU consists of two steps. First, a confidence score is estimated for each token of being an entity token. Then, the proposed Conf-MPU risk estimation is applied to train a multi-class classifier for the NER task. Thorough experiments on two benchmark datasets labeled by various external knowledge demonstrate the superiority of the proposed Conf-MPU over existing DS-NER methods. Our code is available at Github.
2020
pdf
bib
abs
EVIDENCEMINER: Textual Evidence Discovery for Life Sciences
Xuan Wang
|
Yingjun Guan
|
Weili Liu
|
Aabhas Chauhan
|
Enyi Jiang
|
Qi Li
|
David Liem
|
Dibakar Sigdel
|
John Caufield
|
Peipei Ping
|
Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEMINER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover important research issues, leading to more effective research and more in-depth quantitative analysis. The system of EVIDENCEMINER is available at
https://evidenceminer.firebaseapp.com/.
pdf
bib
abs
OptSLA: an Optimization-Based Approach for Sequential Label Aggregation
Nasim Sabetpour
|
Adithya Kulkarni
|
Qi Li
Findings of the Association for Computational Linguistics: EMNLP 2020
The need for the annotated training dataset on which data-hungry machine learning algorithms feed has increased dramatically with advanced acclaim of machine learning applications. To annotate the data, people with domain expertise are needed, but they are seldom available and expensive to hire. This has lead to the thriving of crowdsourcing platforms such as Amazon Mechanical Turk (AMT). However, the annotations provided by one worker cannot be used directly to train the model due to the lack of expertise. Existing literature in annotation aggregation focuses on binary and multi-choice problems. In contrast, little work has been done on complex tasks such as sequence labeling with imbalanced classes, a ubiquitous task in Natural Language Processing (NLP), and Bio-Informatics. We propose OptSLA, an Optimization-based Sequential Label Aggregation method, that jointly considers the characteristics of sequential labeling tasks, workers reliabilities, and advanced deep learning techniques to conquer the challenge. We evaluate our model on crowdsourced data for named entity recognition task. Our results show that the proposed OptSLA outperforms the state-of-the-art aggregation methods, and the results are easier to interpret.