This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Most existing Visual Question Answering (VQA) systems are constrained to support domain-specific questions, i.e., to train different models separately for different VQA tasks, thus generalizing poorly to others. For example, models trained on the reasoning-focused dataset GQA struggle to effectively handle samples from the knowledge-emphasizing dataset OKVQA. Meanwhile, in real-world scenarios, it is user-unfriendly to restrict the domain of questions. Therefore, this paper proposes a necessary task: One-to-Many Visual Question Answering, of which the ultimate goal is to enable a single model to answer as many different domains of questions as possible by the effective integration of available VQA resources. To this end, we first investigate into ten common VQA datasets, and break the task of VQA down into the integration of three key abilities.Then, considering assorted questions rely on different VQA abilities, this paper proposes a novel dynamic Mixture of LoRAs (MoL) strategy. MoL mixes three individually trained LoRA adapters (corresponding to each VQA ability) dynamically for different samples demanding various VQA abilities. The proposed MoL strategy is verified to be highly effective by experiments, establishing SOTAs on four datasets. In addition, MoL generalizes well to three extra zero-shot datasets.Data and codes will be released.
Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings.
Outside-knowledge visual question answering is a challenging task that requires both the acquisition and the use of open-ended real-world knowledge. Some existing solutions draw external knowledge into the cross-modality space which overlooks the much vaster textual knowledge in natural-language space, while others transform the image into a text which further fuses with the textual knowledge into the natural-language space and completely abandons the use of visual features. In this paper, we are inspired to constrain the cross-modality space into the same space of natural-language space which makes the visual features preserved directly, and the model still benefits from the vast knowledge in natural-language space. To this end, we propose a novel framework consisting of a multimodal encoder, a textual encoder and an answer decoder. Such structure allows us to introduce more types of knowledge including explicit and implicit multimodal and textual knowledge. Extensive experiments validate the superiority of the proposed method which outperforms the state-of-the-art by 6.17% accuracy. We also conduct comprehensive ablations of each component, and systematically study the roles of varying types of knowledge. Codes and knowledge data are to be released.
The success of ChatGPT validates the potential of large language models (LLMs) in artificial general intelligence (AGI). Subsequently, the release of LLMs has sparked the open-source community’s interest in instruction-tuning, which is deemed to accelerate ChatGPT’s replication process. However, research on instruction-tuning LLMs in Chinese, the world’s most spoken language, is still in its early stages. Therefore, this paper makes an in-depth empirical study of instruction-tuning LLMs in Chinese, which can serve as a cookbook that provides valuable findings for effectively customizing LLMs that can better respond to Chinese instructions. Specifically, we systematically explore the impact of LLM bases, parameter-efficient methods, instruction data types, which are the three most important elements for instruction-tuning. Besides, we also conduct experiment to study the impact of other factors, e.g., chain-of-thought data and human-value alignment. We hope that this empirical study can make a modest contribution to the open Chinese version of ChatGPT. This paper will release a powerful Chinese LLM that is comparable to ChatGLM. The code and data are available at https: //github.com/PhoebusSi/Alpaca-CoT.
Despite the excellent performance of vision-language pre-trained models (VLPs) on conventional VQA task, they still suffer from two problems: First, VLPs tend to rely on language biases in datasets and fail to generalize to out-of-distribution (OOD) data. Second, they are inefficient in terms of memory footprint and computation. Although promising progress has been made in both problems, most existing works tackle them independently. To facilitate the application of VLP to VQA tasks, it is imperative to jointly study VLP compression and OOD robustness, which, however, has not yet been explored. This paper investigates whether a VLP can be compressed and debiased simultaneously by searching sparse and robust subnetworks. To this end, we systematically study the design of a training and compression pipeline to search the subnetworks, as well as the assignment of sparsity to different modality-specific modules. Our experiments involve 2 VLPs, 2 compression methods, 4 training methods, 2 datasets and a range of sparsity levels. Our results show that there indeed exist sparse and robust subnetworks, which are competitive with the debiased full VLP and clearly outperform the debiasing SoTAs with fewer parameters on OOD datasets VQA-CP v2 and VQA-VS. The codes can be found at https://github.com/PhoebusSi/Compress-Robust-VQA.
Visual Question Answering (VQA) models are prone to learn the shortcut solution formed by dataset biases rather than the intended solution. To evaluate the VQA models’ reasoning ability beyond shortcut learning, the VQA-CP v2 dataset introduces a distribution shift between the training and test set given a question type. In this way, the model cannot use the training set shortcut (from question type to answer) to perform well on the test set. However, VQA-CP v2 only considers one type of shortcut and thus still cannot guarantee that the model relies on the intended solution rather than a solution specific to this shortcut. To overcome this limitation, we propose a new dataset that considers varying types of shortcuts by constructing different distribution shifts in multiple OOD test sets. In addition, we overcome the three troubling practices in the use of VQA-CP v2, e.g., selecting models using OOD test sets, and further standardize OOD evaluation procedure. Our benchmark provides a more rigorous and comprehensive testbed for shortcut learning in VQA. We benchmark recent methods and find that methods specifically designed for particular shortcuts fail to simultaneously generalize to our varying OOD test sets. We also systematically study the varying shortcuts and provide several valuable findings, which may promote the exploration of shortcut learning in VQA.
Models for Visual Question Answering (VQA) often rely on the spurious correlations, i.e., the language priors, that appear in the biased samples of training set, which make them brittle against the out-of-distribution (OOD) test data. Recent methods have achieved promising progress in overcoming this problem by reducing the impact of biased samples on model training. However, these models reveal a trade-off that the improvements on OOD data severely sacrifice the performance on the in-distribution (ID) data (which is dominated by the biased samples). Therefore, we propose a novel contrastive learning approach, MMBS, for building robust VQA models by Making the Most of Biased Samples. Specifically, we construct positive samples for contrastive learning by eliminating the information related to spurious correlation from the original training samples and explore several strategies to use the constructed positive samples for training. Instead of undermining the importance of biased samples in model training, our approach precisely exploits the biased samples for unbiased information that contributes to reasoning. The proposed method is compatible with various VQA backbones. We validate our contributions by achieving competitive performance on the OOD dataset VQA-CP v2 while preserving robust performance on the ID dataset VQA v2.
While sophisticated neural-based models have achieved remarkable success in Visual Question Answering (VQA), these models tend to answer questions only according to superficial correlations between question and answer. Several recent approaches have been developed to address this language priors problem. However, most of them predict the correct answer according to one best output without checking the authenticity of answers. Besides, they only explore the interaction between image and question, ignoring the semantics of candidate answers. In this paper, we propose a select-and-rerank (SAR) progressive framework based on Visual Entailment. Specifically, we first select the candidate answers relevant to the question or the image, then we rerank the candidate answers by a visual entailment task, which verifies whether the image semantically entails the synthetic statement of the question and each candidate answer. Experimental results show the effectiveness of our proposed framework, which establishes a new state-of-the-art accuracy on VQA-CP v2 with a 7.55% improvement.