This is an internal, temporary preview of a proposed change to the ACL Anthology.
It may be incomplete or contain mistakes.
Please do not link to this content or treat it as official.
It will be removed when the change is merged or abandoned.
Large Language Models (LLMs) with API-calling capabilities enabled building effective Language Agents (LA), while also revolutionizing the conventional task-oriented dialogue (TOD) paradigm. However, current approaches face a critical dilemma: TOD systems are often trained on a limited set of target APIs, requiring new data to maintain their quality when interfacing with new services, while LAs are not trained to maintain user intent over multi-turn conversations. Because both robust multi-turn management and advanced function calling are crucial for effective conversational agents, we evaluate these skills on three popular benchmarks: MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA)—and our analyses reveal that specialized approaches excel in one domain but underperform in the other. To bridge this chasm, we introduce **CoALM** (**C**onversational **A**gentic **L**anguage **M**odel), a unified approach that integrates both conversational and agentic capabilities. We created **CoALM-IT**, a carefully constructed multi-task dataset that interleave multi-turn ReAct reasoning with complex API usage. Using CoALM-IT, we train three models **CoALM 8B**, **CoALM 70B**, and **CoALM 405B**, which outperform top domain-specific models, including GPT-4o, across all three benchmarks. This demonstrates the feasibility of a single model approach for both TOD and LA, setting a new standard for conversational agents.
Missing sentence generation (or sentence in-filling) fosters a wide range of applications in natural language generation, such as document auto-completion and meeting note expansion. This task asks the model to generate intermediate missing sentences that can syntactically and semantically bridge the surrounding context. Solving the sentence infilling task requires techniques in natural language processing ranging from understanding to discourse-level planning to generation. In this paper, we propose a framework to decouple the challenge and address these three aspects respectively, leveraging the power of existing large-scale pre-trained models such as BERT and GPT-2. We empirically demonstrate the effectiveness of our model in learning a sentence representation for generation and further generating a missing sentence that fits the context.
We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: (I) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; (ii) how to train a robust model with limited labeled data accompanied by context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.
Naturally occurring paraphrase data, such as multiple news stories about the same event, is a useful but rare resource. This paper compares translation-based paraphrase gathering using human, automatic, or hybrid techniques to monolingual paraphrasing by experts and non-experts. We gather translations, paraphrases, and empirical human quality assessments of these approaches. Neural machine translation techniques, especially when pivoting through related languages, provide a relatively robust source of paraphrases with diversity comparable to expert human paraphrases. Surprisingly, human translators do not reliably outperform neural systems. The resulting data release will not only be a useful test set, but will also allow additional explorations in translation and paraphrase quality assessments and relationships.