2025
pdf
bib
abs
DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal
Vaibhav Aggarwal
|
Ojasv Kamal
|
Abhinav Japesh
|
Zhijing Jin
|
Bernhard Schölkopf
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development, by enabling automation. In software engineering, LLM-powered coding agents have garnered significant attention due to their potential to automate complex development tasks, assist in debugging, and enhance productivity. However, existing approaches often struggle with sub-optimal decision-making, requiring either extensive manual intervention or inefficient compute scaling strategies. To improve coding agent performance, we present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents, that is faster and more effective at recovering from sub-optimal decisions compared to baselines. While traditional agents either follow linear trajectories or rely on random sampling for scaling compute, our approach DARS works by branching out a trajectory at certain key decision points by taking an alternative action given the history of the trajectory and execution feedback of the previous attempt from that point. We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2. Our framework achieves a pass@1 rate of 47%, outperforming state-of-the-art (SOTA) open-source frameworks.
2024
pdf
bib
abs
Moûsai: Efficient Text-to-Music Diffusion Models
Flavio Schneider
|
Ojasv Kamal
|
Zhijing Jin
|
Bernhard Schölkopf
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent years have seen the rapid development of large generative models for text; however, much less research has explored the connection between text and another “language” of communication – music. Music, much like text, can convey emotions, stories, and ideas, and has its own unique structure and syntax. In our work, we bridge text and music via a text-to-music generation model that is highly efficient, expressive, and can handle long-term structure. Specifically, we develop Moûsai, a cascading two-stage latent diffusion model that can generate multiple minutes of high-quality stereo music at 48kHz from textual descriptions. Moreover, our model features high efficiency, which enables real-time inference on a single consumer GPU with a reasonable speed. Through experiments and property analyses, we show our model’s competence over a variety of criteria compared with existing music generation models. Lastly, to promote the open-source culture, we provide a collection of open-source libraries with the hope of facilitating future work in the field. We open-source the following: Codes: https://github.com/archinetai/audio-diffusion-pytorch. Music samples for this paper: http://bit.ly/44ozWDH. Music samples for all models: https://bit.ly/audio-diffusion.
2021
pdf
bib
abs
Adversities are all you need: Classification of self-reported breast cancer posts on Twitter using Adversarial Fine-tuning
Adarsh Kumar
|
Ojasv Kamal
|
Susmita Mazumdar
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
In this paper, we describe our system entry for Shared Task 8 at SMM4H-2021, which is on automatic classification of self-reported breast cancer posts on Twitter. In our system, we use a transformer-based language model fine-tuning approach to automatically identify tweets in the self-reports category. Furthermore, we involve a Gradient-based Adversarial fine-tuning to improve the overall model’s robustness. Our system achieved an F1-score of 0.8625 on the Development set and 0.8501 on the Test set in Shared Task-8 of SMM4H-2021.