2025
pdf
bib
abs
daDPO: Distribution-Aware DPO for Distilling Conversational Abilities
Zhengze Zhang
|
Shiqi Wang
|
Yiqun Shen
|
Simin Guo
|
Dahua Lin
|
Xiaoliang Wang
|
Nguyen Cam-Tu
|
Fei Tan
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs) have demonstrated exceptional performance across various applications, but their conversational abilities decline sharply as model size decreases, presenting a barrier to their deployment in resource-constrained environments. Knowledge distillation (KD) with Direct Preference Optimization (DPO) has emerged as a promising approach to enhance the conversational abilities of smaller models using a larger teacher model. However, current methods primarily focus on “black-box” KD, which only uses the teacher’s responses, overlooking the rich distributional information within the teacher’s probability distribution. This paper addresses this gap by introducing daDPO (Distillation-Aware DPO), a novel framework that integrates the teacher’s distributional information into DPO distillation while preserving theoretical guarantees. Our framework offers a unified objective that enhances both preference optimization and distribution-based distillation. We provide rigorous theoretical analysis and empirical validation, showing that daDPO outperforms existing methods in restoring performance for pruned models and enhancing smaller models within the same LLM family. Notably, in in-domain evaluation, our method enables a 20% pruned Vicuna1.5-7B to achieve near-teacher performance (-7.3% preference rate), and allows Qwen2.5-1.5B to occasionally outperform its 7b teacher model (14.0% win rate).
pdf
bib
abs
Consultant Decoding: Yet Another Synergistic Mechanism
Chuanghao Ding
|
Jiaping Wang
|
Ziqing Yang
|
Xiaoliang Wang
|
Dahua Lin
|
Nguyen Cam-Tu
|
Fei Tan
Findings of the Association for Computational Linguistics: ACL 2025
The synergistic mechanism based on Speculative Decoding (SD) has garnered considerable attention as a simple yet effective approach for accelerating the inference of large language models (LLMs). Nonetheless, the high rejection rates require repeated LLMs calls to validate draft tokens, undermining the overall efficiency gain of SD.In this work, we revisit existing verification mechanisms and propose a novel synergetic mechanism Consultant Decoding (CD). CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality (~100% of the target model’s performance). Interestingly, this is achieved by combining models whose parameter sizes differ by two orders of magnitude.In addition, CD reduces the call frequency of the large target model to below 10%, particularly in more demanding tasks.CD’s performance was even found to surpass that of the large target model, which theoretically represents the upper bound for speculative decoding.
2024
pdf
bib
abs
Retrospex: Language Agent Meets Offline Reinforcement Learning Critic
Yufei Xiang
|
Yiqun Shen
|
Yeqin Zhang
|
Nguyen Cam-Tu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) possess extensive knowledge and commonsense reasoning capabilities, making them valuable for creating powerful agents. However, existing LLM agent frameworks have not fully utilized past experiences for improvement. This work introduces a new LLM-based agent framework called Retrospex, which addresses this challenge by analyzing past experiences in depth. Unlike previous approaches, Retrospex does not directly integrate experiences into the LLM’s context. Instead, it combines the LLM’s action likelihood with action values estimated by a Reinforcement Learning (RL) Critic, which is trained on past experiences through an offline “retrospection” process. Additionally, Retrospex employs a dynamic action rescoring mechanism that increases the importance of experience-based values for tasks that require more interaction with the environment. We evaluate Retrospex in ScienceWorld, ALFWorld and Webshop environments, demonstrating its advantages over strong baselines.
pdf
bib
abs
Reward Difference Optimization For Sample Reweighting In Offline RLHF
Shiqi Wang
|
Zhengze Zhang
|
Rui Zhao
|
Fei Tan
|
Nguyen Cam-Tu
Findings of the Association for Computational Linguistics: EMNLP 2024
With the wide deployment of Large Language Models (LLMs), aligning LLMs with human values becomes increasingly important. Although Reinforcement Learning with Human Feedback (RLHF) proves effective, it is complicated and highly resource-intensive. As such, offline RLHF has been introduced as an alternative solution, which directly optimizes LLMs with ranking losses on a fixed preference dataset. Current offline RLHF only captures the ordering relationship between responses, overlooking the crucial aspect of “how much” one is preferred over the others. To address this issue, we propose a simple yet effective solution based on reward difference prediction. Specifically, we introduce reward difference coefficients to reweigh sample pairs in offline RLHF. We then propose a difference model that considers rich interactions between a pair of responses for predicting these difference coefficients. Experiments with 7B LLMs on the HH and TL;DR dataset verify the effectiveness of our method in both automatic metrics and human evaluation, highlighting its potential for aligning LLMs with human values.
2023
pdf
bib
abs
Diversify Question Generation with Retrieval-Augmented Style Transfer
Qi Gou
|
Zehua Xia
|
Bowen Yu
|
Haiyang Yu
|
Fei Huang
|
Yongbin Li
|
Nguyen Cam-Tu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Given a textual passage and an answer, humans are able to ask questions with various expressions, but this ability is still challenging for most question generation (QG) systems. Existing solutions mainly focus on the internal knowledge within the given passage or the semantic word space for diverse content planning. These methods, however, have not considered the potential of external knowledge for expression diversity. To bridge this gap, we propose RAST, a framework for Retrieval-Augmented Style Transfer, where the objective is to utilize the style of diverse templates for question generation. For training RAST, we develop a novel Reinforcement Learning (RL) based approach that maximizes a weighted combination of diversity reward and consistency reward. Here, the consistency reward is computed by a Question-Answering (QA) model, whereas the diversity reward measures how much the final output mimics the retrieved template. Experimental results show that our method outperforms previous diversity-driven baselines on diversity while being comparable in terms of consistency scores. Our code is available at
https://github.com/gouqi666/RAST.
pdf
bib
abs
Improving Question Generation with Multi-level Content Planning
Zehua Xia
|
Qi Gou
|
Bowen Yu
|
Haiyang Yu
|
Fei Huang
|
Yongbin Li
|
Nguyen Cam-Tu
Findings of the Association for Computational Linguistics: EMNLP 2023
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context. Previous studies have suggested that key phrase selection is essential for question generation (QG), yet it is still challenging to connect such disjointed phrases into meaningful questions, particularly for long context. To mitigate this issue, we propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-Model, which simultaneously selects key phrases and generates full answers, and Q-Model which takes the generated full answer as an additional input to generate questions. Here, full answer generation is introduced to connect the short answer with the selected key phrases, thus forming an answer-aware summary to facilitate QG. Both FA-Model and Q-Model are formalized as simple-yet-effective Phrase-Enhanced Transformers, our joint model for phrase selection and text generation. Experimental results show that our method outperforms strong baselines on two popular QG datasets. Our code is available at https://github.com/zeaver/MultiFactor.