2025
pdf
bib
abs
Self-Training Elicits Concise Reasoning in Large Language Models
Tergel Munkhbat
|
Namgyu Ho
|
Seo Hyun Kim
|
Yongjin Yang
|
Yujin Kim
|
Se-Young Yun
Findings of the Association for Computational Linguistics: ACL 2025
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training.
pdf
bib
abs
The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models
Seungone Kim
|
Juyoung Suk
|
Ji Yong Cho
|
Shayne Longpre
|
Chaeeun Kim
|
Dongkeun Yoon
|
Guijin Son
|
Yejin Cho
|
Sheikh Shafayat
|
Jinheon Baek
|
Sue Hyun Park
|
Hyeonbin Hwang
|
Jinkyung Jo
|
Hyowon Cho
|
Haebin Shin
|
Seongyun Lee
|
Hanseok Oh
|
Noah Lee
|
Namgyu Ho
|
Se June Joo
|
Miyoung Ko
|
Yoonjoo Lee
|
Hyungjoo Chae
|
Jamin Shin
|
Joel Jang
|
Seonghyeon Ye
|
Bill Yuchen Lin
|
Sean Welleck
|
Graham Neubig
|
Moontae Lee
|
Kyungjae Lee
|
Minjoon Seo
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria-like helpfulness and harmlessness-which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 100 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
2024
pdf
bib
abs
Carpe diem: On the Evaluation of World Knowledge in Lifelong Language Models
Yujin Kim
|
Jaehong Yoon
|
Seonghyeon Ye
|
Sangmin Bae
|
Namgyu Ho
|
Sung Ju Hwang
|
Se-Young Yun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The dynamic nature of knowledge in an ever-changing world presents challenges for language models trained on static data; the model in the real world often requires not only acquiring new knowledge but also overwriting outdated information into updated ones. To study the ability of language models for these time-dependent dynamics in human language, we introduce a novel task, EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database. The construction of EvolvingQA is automated with our pipeline using large language models. We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge. Our analysis suggests that models fail to rectify knowledge due to small weight gradients. In addition, we elucidate that language models particularly struggle to reflect the change of numerical or temporal information. Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models. Our data construction code and dataset files are available at https://github.com/kimyuji/EvolvingQA_benchmark.
2023
pdf
bib
abs
Large Language Models Are Reasoning Teachers
Namgyu Ho
|
Laura Schmid
|
Se-Young Yun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent works have shown that chain-of-thought (CoT) prompting can elicit language models to solve complex reasoning tasks, step-by-step. However, prompt-based CoT methods are dependent on very large models such as GPT-3 175B which are prohibitive to deploy at scale. In this paper, we use these large models as reasoning teachers to enable complex reasoning in smaller models and reduce model size requirements by several orders of magnitude. We propose Fine-tune-CoT, a method that generates reasoning samples from very large teacher models to fine-tune smaller models. We evaluate our method on a wide range of public models and complex tasks. We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks. Additionally, we extend our method by leveraging the teacher model’s ability to generate multiple distinct rationales for each original sample. Enriching the fine-tuning data with such diverse reasoning results in a substantial performance boost across datasets, even for very small models. We conduct ablations and sample studies to understand the emergence of reasoning capabilities of student models. Our code implementation and data are available at
https://github.com/itsnamgyu/reasoning-teacher.
pdf
bib
abs
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
Yongjin Yang
|
Joonkee Kim
|
Yujin Kim
|
Namgyu Ho
|
James Thorne
|
Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023
With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, **HARE**, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.