Nivranshu Pasricha


2023

pdf
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

pdf
CURED4NLG: A Dataset for Table-to-Text Generation
Nivranshu Pasricha | Mihael Arcan | Paul Buitelaar
Proceedings of the 4th Conference on Language, Data and Knowledge

2021

pdf
NUIG-DSI’s submission to The GEM Benchmark 2021
Nivranshu Pasricha | Mihael Arcan | Paul Buitelaar
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

This paper describes the submission by NUIG-DSI to the GEM benchmark 2021. We participate in the modeling shared task where we submit outputs on four datasets for data-to-text generation, namely, DART, WebNLG (en), E2E and CommonGen. We follow an approach similar to the one described in the GEM benchmark paper where we use the pre-trained T5-base model for our submission. We train this model on additional monolingual data where we experiment with different masking strategies specifically focused on masking entities, predicates and concepts as well as a random masking strategy for pre-training. In our results we find that random masking performs the best in terms of automatic evaluation metrics, though the results are not statistically significantly different compared to other masking strategies.

2020

pdf
Utilising Knowledge Graph Embeddings for Data-to-Text Generation
Nivranshu Pasricha | Mihael Arcan | Paul Buitelaar
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

Data-to-text generation has recently seen a move away from modular and pipeline architectures towards end-to-end architectures based on neural networks. In this work, we employ knowledge graph embeddings and explore their utility for end-to-end approaches in a data-to-text generation task. Our experiments show that using knowledge graph embeddings can yield an improvement of up to 2 – 3 BLEU points for seen categories on the WebNLG corpus without modifying the underlying neural network architecture.

pdf
NUIG-DSI at the WebNLG+ challenge: Leveraging Transfer Learning for RDF-to-text generation
Nivranshu Pasricha | Mihael Arcan | Paul Buitelaar
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

This paper describes the system submitted by NUIG-DSI to the WebNLG+ challenge 2020 in the RDF-to-text generation task for the English language. For this challenge, we leverage transfer learning by adopting the T5 model architecture for our submission and fine-tune the model on the WebNLG+ corpus. Our submission ranks among the top five systems for most of the automatic evaluation metrics achieving a BLEU score of 51.74 over all categories with scores of 58.23 and 45.57 across seen and unseen categories respectively.

2019

pdf
Leveraging Rule-Based Machine Translation Knowledge for Under-Resourced Neural Machine Translation Models
Daniel Torregrosa | Nivranshu Pasricha | Maraim Masoud | Bharathi Raja Chakravarthi | Juan Alonso | Noe Casas | Mihael Arcan
Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks

Search
Co-authors