2025
pdf
bib
abs
Can Vision-Language Models Evaluate Handwritten Math?
Oikantik Nath
|
Hanani Bathina
|
Mohammed Safi Ur Rahman Khan
|
Mitesh M Khapra
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in Vision-Language Models (VLMs) have opened new possibilities in automatic grading of handwritten student responses, particularly in mathematics. However, a comprehensive study to test the ability of VLMs to evaluate and reason over handwritten content remains absent. To address this gap, we introduce FERMAT, a benchmark designed to assess VLMs’ ability to detect, localize and correct errors in handwritten mathematical content. FERMAT spans four key error dimensions - computational, conceptual, notational, and presentation - and comprises over 2,200 handwritten math solutions derived from 609 manually curated problems from grades 7-12 with intentionally introduced perturbations. Using FERMAT we benchmark nine VLMs across three tasks: error detection, localization, and correction. Our results reveal significant shortcomings in current VLMs in reasoning over handwritten text, with Gemini-1.5-Pro achieving the highest error correction rate (77%). We also observed that some models struggle with processing handwritten content, as their accuracy improves when handwritten inputs are replaced with printed text or images. These findings highlight the limitations of current VLMs and reveal new avenues for improvement. We will release FERMAT and all the associated resources in the open-source to drive further research.
pdf
bib
abs
Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs
Sumanth Doddapaneni
|
Mohammed Safi Ur Rahman Khan
|
Dilip Venkatesh
|
Raj Dabre
|
Anoop Kunchukuttan
|
Mitesh M Khapra
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area.
pdf
bib
abs
FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes
Janki Atul Nawale
|
Mohammed Safi Ur Rahman Khan
|
Janani D
|
Mansi Gupta
|
Danish Pruthi
|
Mitesh M Khapra
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India. To address this gap, we introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 identity groups encompassing diverse castes, religions, regions, and tribes. We first consult domain experts to curate over 1,800 socio-cultural topics spanning behaviors and situations, where biases and stereotypes are likely to emerge. Grounded in these topics, we generate and manually validate 20,000 real-world scenario templates to probe LLMs for fairness. We structure these templates into three evaluation tasks: plausibility, judgment, and generation. Our evaluation of 14 popular LLMs on these tasks reveals strong negative biases against marginalized identities, with models frequently reinforcing common stereotypes. Additionally, we find that models struggle to mitigate bias even when explicitly asked to rationalize their decision. Our evaluation provides evidence of both allocative and representational harms that current LLMs could cause towards Indian identities, calling for a more cautious usage in practical applications. We release INDIC-BIAS as an open-source benchmark to advance research on benchmarking and mitigating biases and stereotypes in the Indian context.
pdf
bib
abs
Towards Building Large Scale Datasets and State-of-the-Art Automatic Speech Translation Systems for 14 Indian Languages
Ashwin Sankar
|
Sparsh Jain
|
Nikhil Narasimhan
|
Devilal Choudhary
|
Dhairya Suman
|
Mohammed Safi Ur Rahman Khan
|
Anoop Kunchukuttan
|
Mitesh M Khapra
|
Raj Dabre
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Speech translation for Indian languages remains a challenging task due to the scarcity of large-scale, publicly available datasets that capture the linguistic diversity and domain coverage essential for real-world applications. Existing datasets cover a fraction of Indian languages and lack the breadth needed to train robust models that generalize beyond curated benchmarks. To bridge this gap, we introduce BhasaAnuvaad, the largest speech translation dataset for Indian languages, spanning over 44 thousand hours of audio and 17 million aligned text segments across 14 Indian languages and English. Our dataset is built through a threefold methodology: (a) aggregating high-quality existing sources, (b) large-scale web crawling to ensure linguistic and domain diversity, and (c) creating synthetic data to model real-world speech disfluencies. Leveraging BhasaAnuvaad, we train IndicSeamless, a state-of-the-art speech translation model for Indian languages that performs better than existing models. Our experiments demonstrate improvements in the translation quality, setting a new standard for Indian language speech translation. We will release all the code, data and model weights in the open-source, with permissive licenses to promote accessibility and collaboration.
pdf
bib
abs
MILU: A Multi-task Indic Language Understanding Benchmark
Sshubam Verma
|
Mohammed Safi Ur Rahman Khan
|
Vishwajeet Kumar
|
Rudra Murthy
|
Jaydeep Sen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Evaluating Large Language Models (LLMs) in low-resource and linguistically diverse languages remains a significant challenge in NLP, particularly for languages using non-Latin scripts like those spoken in India. Existing benchmarks predominantly focus on English, leaving substantial gaps in assessing LLM capabilities in these languages. We introduce MILU, a Multi-task Indic Language Understanding Benchmark, a comprehensive evaluation benchmark designed to address this gap. MILU spans 8 domains and 41 subjects across 11 Indic languages, reflecting general and culturally specific knowledge. With an India-centric design, incorporates material from regional and state-level examinations, covering topics such as local history, arts, festivals, and laws, alongside standard subjects like science and mathematics. We evaluate over 42 LLMs, and find that current LLMs struggle with MILU, with GPT-4o achieving the highest average accuracy at 74 percent. Open multilingual models outperform language-specific fine-tuned models, which perform only slightly better than random baselines. Models also perform better in high resource languages as compared to low resource ones. Domain-wise analysis indicates that models perform poorly in culturally relevant areas like Arts and Humanities, Law and Governance compared to general fields like STEM. To the best of our knowledge, MILU is the first of its kind benchmark focused on Indic languages, serving as a crucial step towards comprehensive cultural evaluation. All code, benchmarks, and artifacts are publicly available to foster open research.
2024
pdf
bib
abs
IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages
Mohammed Safi Ur Rahman Khan
|
Priyam Mehta
|
Ananth Sankar
|
Umashankar Kumaravelan
|
Sumanth Doddapaneni
|
Suriyaprasaad B
|
Varun G
|
Sparsh Jain
|
Anoop Kunchukuttan
|
Pratyush Kumar
|
Raj Dabre
|
Mitesh M. Khapra
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages.
pdf
bib
abs
Finding Blind Spots in Evaluator LLMs with Interpretable Checklists
Sumanth Doddapaneni
|
Mohammed Safi Ur Rahman Khan
|
Sshubam Verma
|
Mitesh M Khapra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications.