2025
pdf
bib
abs
On the Risk of Evidence Pollution for Malicious Social Text Detection in the Era of LLMs
Herun Wan
|
Minnan Luo
|
Zhixiong Su
|
Guang Dai
|
Xiang Zhao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Evidence-enhanced detectors present remarkable abilities in identifying malicious social text. However, the rise of large language models (LLMs) brings potential risks of evidence pollution to confuse detectors. This paper explores potential manipulation scenarios including basic pollution, and rephrasing or generating evidence by LLMs. To mitigate the negative impact, we propose three defense strategies from the data and model sides, including machine-generated text detection, a mixture of experts, and parameter updating. Extensive experiments on four malicious social text detection tasks with ten datasets illustrate that evidence pollution significantly compromises detectors, where the generating strategy causes up to a 14.4% performance drop. Meanwhile, the defense strategies could mitigate evidence pollution, but they faced limitations for practical employment. Further analysis illustrates that polluted evidence (i) is of high quality, evaluated by metrics and humans; (ii) would compromise the model calibration, increasing expected calibration error up to 21.6%; and (iii) could be integrated to amplify the negative impact, especially for encoder-based LMs, where the accuracy drops by 21.8%.
pdf
bib
abs
HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring
Zhixiong Su
|
Yichen Wang
|
Herun Wan
|
Zhaohan Zhang
|
Minnan Luo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The misuse of large language models (LLMs) poses potential risks, motivating the development of machine-generated text (MGT) detection. Existing literature primarily concentrates on binary, document-level detection, thereby neglecting texts that are composed jointly by human and LLM contributions. Hence, this paper explores the possibility of fine-grained MGT detection under human-AI coauthoring.We suggest fine-grained detectors can pave pathways toward coauthored text detection with a numeric AI ratio.Specifically, we propose a dataset, HACo-Det, which produces human-AI coauthored texts via an automatic pipeline with word-level attribution labels. We retrofit seven prevailing document-level detectors to generalize them to word-level detection.Then we evaluate these detectors on HACo-Det on both word- and sentence-level detection tasks.Empirical results show that metric-based methods struggle to conduct fine-grained detection with a 0.462 average F1 score, while finetuned models show superior performance and better generalization across domains. However, we argue that fine-grained co-authored text detection is far from solved.We further analyze factors influencing performance, e.g., context window, and highlight the limitations of current methods, pointing to potential avenues for improvement.
pdf
bib
abs
IMOL: Incomplete-Modality-Tolerant Learning for Multi-Domain Fake News Video Detection
Zhi Zeng
|
Jiaying Wu
|
Minnan Luo
|
Herun Wan
|
Xiangzheng Kong
|
Zihan Ma
|
Guang Dai
|
Qinghua Zheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
While recent advances in fake news video detection have shown promising potential, existing approaches typically (1) focus on a specific domain (e.g., politics) and (2) assume the availability of multiple modalities, including video, audio, description texts, and related images. However, these methods struggle to generalize to real-world scenarios, where questionable information spans diverse domains and is often modality-incomplete due to factors such as upload degradation or missing metadata. To address these challenges, we introduce two real-world multi-domain news video benchmarks that reflect modality incompleteness and propose IMOL, an incomplete-modality-tolerant learning framework for multi-domain fake news video detection. Inspired by cognitive theories suggesting that humans infer missing modalities through cross-modal guidance and retrieve relevant knowledge from memory for reference, IMOL employs a hierarchical transferable information integration strategy. This consists of two key phases: (1) leveraging cross-modal consistency to reconstruct missing modalities and (2) refining sample-level transferable knowledge through cross-sample associative reasoning. Extensive experiments demonstrate that IMOL significantly enhances the performance and robustness of multi-domain fake news video detection while effectively generalizing to unseen domains under incomplete modality conditions.
pdf
bib
abs
Unveiling Fake News with Adversarial Arguments Generated by Multimodal Large Language Models
Xiaofan Zheng
|
Minnan Luo
|
Xinghao Wang
Proceedings of the 31st International Conference on Computational Linguistics
In the era of social media, the proliferation of fake news has created an urgent need for more effective detection methods, particularly for multimodal content. The task of identifying fake news is highly challenging, as it requires broad background knowledge and understanding across various domains. Existing detection methods primarily rely on neural networks to learn latent feature representations, resulting in black-box classifications with limited real-world understanding. To address these limitations, we propose a novel approach that leverages Multimodal Large Language Models (MLLMs) for fake news detection. Our method introduces adversarial reasoning through debates from opposing perspectives. By harnessing the powerful capabilities of MLLMs in text generation and cross-modal reasoning, we guide these models to engage in multimodal debates, generating adversarial arguments based on contradictory evidence from both sides of the issue. We then utilize these arguments to learn reasonable thinking patterns, enabling better multimodal fusion and fine-tuning. This process effectively positions our model as a debate referee for adversarial inference. Extensive experiments conducted on four fake news detection datasets demonstrate that our proposed method significantly outperforms state-of-the-art approaches.
pdf
bib
abs
AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant
Chengyou Jia
|
Minnan Luo
|
Zhuohang Dang
|
Qiushi Sun
|
Fangzhi Xu
|
Junlin Hu
|
Tianbao Xie
|
Zhiyong Wu
Findings of the Association for Computational Linguistics: ACL 2025
Digital agents capable of automating complex computer tasks have attracted considerable attention. However, existing agent methods exhibit deficiencies in their generalization and specialization capabilities, especially in handling open-ended computer tasks in real-world environments. Inspired by the rich functionality of the App store, we present AgentStore, a scalable platform designed to dynamically integrate heterogeneous agents for automating computer tasks. AgentStore allows the system to continuously enrich its capabilities and adapt to rapidly evolving operating systems. Additionally, we propose a novel core MetaAgent with the AgentToken strategy to efficiently manage diverse agents and utilize their specialized and generalist abilities for both domain-specific and system-wide tasks. Extensive experiments on three interactive real-world benchmarks demonstrate that AgentStore significantly expands the capability boundaries of agent systems in both generalization and specialization, underscoring its potential for developing the specialized generalist computer assistant.
2024
pdf
bib
abs
What Does the Bot Say? Opportunities and Risks of Large Language Models in Social Media Bot Detection
Shangbin Feng
|
Herun Wan
|
Ningnan Wang
|
Zhaoxuan Tan
|
Minnan Luo
|
Yulia Tsvetkov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Social media bot detection has always been an arms race between advancements in machine learning bot detectors and adversarial bot strategies to evade detection. In this work, we bring the arms race to the next level by investigating the opportunities and risks of state-of-the-art large language models (LLMs) in social bot detection. To investigate the opportunities, we design novel LLM-based bot detectors by proposing a mixture-of-heterogeneous-experts framework to divide and conquer diverse user information modalities. To illuminate the risks, we explore the possibility of LLM-guided manipulation of user textual and structured information to evade detection. Extensive experiments with three LLMs on two datasets demonstrate that instruction tuning on merely 1,000 annotated examples produces specialized LLMs that outperform state-of-the-art baselines by up to 9.1% on both datasets, while LLM-guided manipulation strategies could significantly bring down the performance of existing bot detectors by up to 29.6% and harm the calibration and reliability of bot detection systems.
pdf
bib
abs
Event-Radar: Event-driven Multi-View Learning for Multimodal Fake News Detection
Zihan Ma
|
Minnan Luo
|
Hao Guo
|
Zhi Zeng
|
Yiran Hao
|
Xiang Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The swift detection of multimedia fake news has emerged as a crucial task in combating malicious propaganda and safeguarding the security of the online environment. While existing methods have achieved commendable results in modeling entity-level inconsistency, addressing event-level inconsistency following the inherent subject-predicate logic of news and robustly learning news representations from poor-quality news samples remain two challenges. In this paper, we propose an Event-diven fake news detection framework (Event-Radar) based on multi-view learning, which integrates visual manipulation, textual emotion and multimodal inconsistency at event-level for fake news detection. Specifically, leveraging the capability of graph structures to capture interactions between events and parameters, Event-Radar captures event-level multimodal inconsistency by constructing an event graph that includes multimodal entity subject-predicate logic. Additionally, to mitigate the interference of poor-quality news, Event-Radar introduces a multi-view fusion mechanism, learning comprehensive and robust representations by computing the credibility of each view as a clue, thereby detecting fake news. Extensive experiments demonstrate that Event-Radar achieves outstanding performance on three large-scale fake news detection benchmarks. Our studies also confirm that Event-Radar exhibits strong robustness, providing a paradigm for detecting fake news from noisy news samples.
pdf
bib
abs
DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
Herun Wan
|
Shangbin Feng
|
Zhaoxuan Tan
|
Heng Wang
|
Yulia Tsvetkov
|
Minnan Luo
Findings of the Association for Computational Linguistics: ACL 2024
Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
2023
pdf
bib
abs
BIC: Twitter Bot Detection with Text-Graph Interaction and Semantic Consistency
Zhenyu Lei
|
Herun Wan
|
Wenqian Zhang
|
Shangbin Feng
|
Zilong Chen
|
Jundong Li
|
Qinghua Zheng
|
Minnan Luo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Twitter bots are automatic programs operated by malicious actors to manipulate public opinion and spread misinformation. Research efforts have been made to automatically identify bots based on texts and networks on social media. Existing methods only leverage texts or networks alone, and while few works explored the shallow combination of the two modalities, we hypothesize that the interaction and information exchange between texts and graphs could be crucial for holistically evaluating bot activities on social media. In addition, according to a recent survey (Cresci, 2020), Twitter bots are constantly evolving while advanced bots steal genuine users’ tweets and dilute their malicious content to evade detection. This results in greater inconsistency across the timeline of novel Twitter bots, which warrants more attention. In light of these challenges, we propose BIC, a Twitter Bot detection framework with text-graph Interaction and semantic Consistency. Specifically, in addition to separately modeling the two modalities on social media, BIC employs a text-graph interaction module to enable information exchange across modalities in the learning process. In addition, given the stealing behavior of novel Twitter bots, BIC proposes to model semantic consistency in tweets based on attention weights while using it to augment the decision process. Extensive experiments demonstrate that BIC consistently outperforms state-of-the-art baselines on two widely adopted datasets. Further analyses reveal that text-graph interactions and modeling semantic consistency are essential improvements and help combat bot evolution.
pdf
bib
abs
Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks
Heng Wang
|
Wenqian Zhang
|
Yuyang Bai
|
Zhaoxuan Tan
|
Shangbin Feng
|
Qinghua Zheng
|
Minnan Luo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.
pdf
bib
abs
BotPercent: Estimating Bot Populations in Twitter Communities
Zhaoxuan Tan
|
Shangbin Feng
|
Melanie Sclar
|
Herun Wan
|
Minnan Luo
|
Yejin Choi
|
Yulia Tsvetkov
Findings of the Association for Computational Linguistics: EMNLP 2023
Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method—BotPercent—is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. The implementation of BotPercent is available at https://github.com/TamSiuhin/BotPercent.
2022
pdf
bib
abs
PAR: Political Actor Representation Learning with Social Context and Expert Knowledge
Shangbin Feng
|
Zhaoxuan Tan
|
Zilong Chen
|
Ningnan Wang
|
Peisheng Yu
|
Qinghua Zheng
|
Xiaojun Chang
|
Minnan Luo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Modeling the ideological perspectives of political actors is an essential task in computational political science with applications in many downstream tasks. Existing approaches are generally limited to textual data and voting records, while they neglect the rich social context and valuable expert knowledge for holistic ideological analysis. In this paper, we propose PAR, a Political Actor Representation learning framework that jointly leverages social context and expert knowledge. Specifically, we retrieve and extract factual statements about legislators to leverage social context information. We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations. Finally, we train PAR with three objectives to align representation learning with expert knowledge, model ideological stance consistency, and simulate the echo chamber phenomenon. Extensive experiments demonstrate that PAR is better at augmenting political text understanding and successfully advances the state-of-the-art in political perspective detection and roll call vote prediction. Further analysis proves that PAR learns representations that reflect the political reality and provide new insights into political behavior.
pdf
bib
abs
KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media
Wenqian Zhang
|
Shangbin Feng
|
Zilong Chen
|
Zhenyu Lei
|
Jundong Li
|
Minnan Luo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach’s data efficiency.
2020
pdf
bib
abs
基于有向异构图的发票明细税收分类方法(Tax Classification of Invoice Details Based on Directed Heterogeneous Graph)
Peiyao Zhao (赵珮瑶)
|
Qinghua Zheng (郑庆华)
|
Bo Dong (董博)
|
Jianfei Ruan (阮建飞)
|
Minnan Luo (罗敏楠)
Proceedings of the 19th Chinese National Conference on Computational Linguistics
税收是国家赖以生存的物质基础。为加快税收现代化,方便纳税人便捷、规范开具增值税发票,国税总局规定纳税人在税控系统开票前选择发票明细对应的税收分类才可正常开具发票。提高税收分类的准确度,是构建税收风险指标和分析纳税人行为特征的重要基础。基于此,本文提出了一种基于有向异构图的短文本分类模型(Heterogeneous Directed Graph Attenton Network,HDGAT),利用发票明细间的有向信息建模,引入外部知识,显著地提高了发票明细的税收分类准确度。