Learning from preference feedback is essential for aligning large language models (LLMs) with human values and improving the quality of generated responses. However, existing preference learning methods rely heavily on curated data from humans or advanced LLMs, which is costly and difficult to scale. In this work, we present PUGC, a novel framework that leverages implicit human Preferences in unlabeled User-Generated Content (UGC) to generate preference data. Although UGC is not explicitly created to guide LLMs in generating human-preferred responses, it often reflects valuable insights and implicit preferences from its creators that has the potential to address readers’ questions. PUGC transforms UGC into user queries and generates responses from the policy model. The UGC is then leveraged as a reference text for response scoring, aligning the model with these implicit preferences. This approach improves the quality of preference data while enabling scalable, domain-specific alignment. Experimental results on Alpaca Eval 2 show that models trained with DPO and PUGC achieve a 9.37% performance improvement over traditional methods, setting a 35.93% state-of-the-art length-controlled win rate using Mistral-7B-Instruct. Further studies highlight gains in reward quality, domain-specific alignment effectiveness, robustness against UGC quality, and theory of mind capabilities. Our code and dataset are available at https://zhaoxuan.info/PUGC.github.io/.
This paper addresses the gap in predicting turn-taking and backchannel actions in human-machine conversations using multi-modal signals (linguistic, acoustic, and visual). To overcome the limitation of existing datasets, we propose an automatic data collection pipeline that allows us to collect and annotate over 210 hours of human conversation videos. From this, we construct a Multi-Modal Face-to-Face (MM-F2F) human conversation dataset, including over 1.5M words and corresponding turn-taking and backchannel annotations from approximately 20M frames. Additionally, we present an end-to-end framework that predicts the probability of turn-taking and backchannel actions from multi-modal signals. The proposed model emphasizes the interrelation between modalities and supports any combination of text, audio, and video inputs, making it adaptable to a variety of realistic scenarios. Our experiments show that our approach achieves state-of-the-art performance on turn-taking and backchannel prediction tasks, achieving a 10% increase in F1-score on turn-taking and a 33% increase on backchannel prediction. Our dataset and code are publicly available online to ease of subsequent research.
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs