Michael Kozielski


2025

pdf bib
Domain Adaptation of Foundation LLMs for e-Commerce
Christian Herold | Michael Kozielski | Tala Bazazo | Pavel Petrushkov | Yannick Versley | Seyyed Hadi Hashemi | Patrycja Cieplicka | Dominika Basaj | Shahram Khadivi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

We present the e-Llama models: 8 billion and 70 billion parameter large language models that are adapted towards the e-commerce domain.These models are meant as foundation models with deep knowledge about e-commerce, that form a base for instruction- and fine-tuning.The e-Llama models are obtained by continuously pretraining the Llama 3.1 base models on 1 trillion tokens of domain-specific data.We discuss our approach and motivate our choice of hyperparameters with a series of ablation studies.To quantify how well the models have been adapted to the e-commerce domain, we define and implement a set of multilingual, e-commerce specific evaluation tasks.We show that, when carefully choosing the training setup, the Llama 3.1 models can be adapted towards the new domain without sacrificing significant performance on general domain tasks.We also explore the possibility of merging the adapted model and the base model for a better control of the performance trade-off between domains.

2018

pdf bib
Generating E-Commerce Product Titles and Predicting their Quality
José G. Camargo de Souza | Michael Kozielski | Prashant Mathur | Ernie Chang | Marco Guerini | Matteo Negri | Marco Turchi | Evgeny Matusov
Proceedings of the 11th International Conference on Natural Language Generation

E-commerce platforms present products using titles that summarize product information. These titles cannot be created by hand, therefore an algorithmic solution is required. The task of automatically generating these titles given noisy user provided titles is one way to achieve the goal. The setting requires the generation process to be fast and the generated title to be both human-readable and concise. Furthermore, we need to understand if such generated titles are usable. As such, we propose approaches that (i) automatically generate product titles, (ii) predict their quality. Our approach scales to millions of products and both automatic and human evaluations performed on real-world data indicate our approaches are effective and applicable to existing e-commerce scenarios.