Mengze Li


2025

pdf bib
LegalReasoner: Step-wised Verification-Correction for Legal Judgment Reasoning
Weijie Shi | Han Zhu | Jiaming Ji | Mengze Li | Jipeng Zhang | Ruiyuan Zhang | Jia Zhu | Jiajie Xu | Sirui Han | Yike Guo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Legal judgment prediction (LJP) aims to function as a judge by making final rulings based on case claims and facts, which plays a vital role in the judicial domain for supporting court decision-making and improving judicial efficiency. However, existing methods often struggle with logical errors when conducting complex legal reasoning. We propose LegalReasoner, which enhances LJP reliability through step-wise verification and correction of the reasoning process. Specifically, it first identifies dispute points to decompose complex cases, and then conducts step-wise reasoning while employing a process verifier to validate each step’s logic from correctness, progressiveness, and potential perspectives. When errors are detected, expert-designed attribution and resolution strategies are applied for correction. To fine-tune LegalReasoner, we release the LegalHK dataset, containing 58,130 Hong Kong court cases with detailed annotations of dispute points, step-by-step reasoning chains, and process verification labels. Experiments demonstrate that LegalReasoner significantly improves concordance with court decisions from 72.37 to 80.27 on LLAMA-3.1-70B. The data is available at https://huggingface.co/datasets/weijiezz/LegalHK.

pdf bib
Embracing Imperfection: Simulating Students with Diverse Cognitive Levels Using LLM-based Agents
Tao Wu | Jingyuan Chen | Wang Lin | Mengze Li | Yumeng Zhu | Ang Li | Kun Kuang | Fei Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as “helpful assistants”, target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the Student_100 dataset, consisting of 100 students working on Python programming and 5,000 learning records. Experimental results show that our method consistently outperforms baseline models, achieving 100% improvement in simulation accuracy and realism.

pdf bib
Out-of-Distribution Detection via LLM-Guided Outlier Generation for Text-attributed Graph
Xiangwei Lv | Mengze Li | Jingyuan Chen | Zhiang Dong | Sirui Han | Beishui Liao
Findings of the Association for Computational Linguistics: ACL 2025

Text-Attributed Graphs (TAGs), which are characterized with text attributes, are widely used in the real world. When evaluating fully trained models designed for TAG predictions, they may perform significantly unsatisfactory on samples outside the In-Distribution (ID) data, which may raise serious security issues. To tackle it, Out-Of-Distribution (OOD) detection is introduced to the TAGs field, which aims to utilize a detector to classify OOD and ID samples. Recent studies attempt to introduce extra OOD datasets to regularize the detection model. However, due to the vastness of the OOD data space, high-quality OOD samples for training the detector are scarce and difficult to obtain in the real world. Thus, we utilize Large Language Models (LLMs) to generate the OOD training samples with high quality. There are two issues in this process: (1) LLMs tend to generate OOD-node samples significantly different from ID ones, with a limited learning value for OOD and ID relations. (2) Due to the inherent structure of TAGs, obtained OOD nodes need to be integrated with existing nodes by generating edges using LLMs. However, the large number of nodes makes reasoning over each node pair computationally unbearable. Toward these issues, we introduce LLMGuard with challenging OOD-node generation and lightweight edge predictors. Extensive experiments prove the effectiveness of LLMGuard. The source code is available.

2023

pdf bib
Multi-modal Action Chain Abductive Reasoning
Mengze Li | Tianbao Wang | Jiahe Xu | Kairong Han | Shengyu Zhang | Zhou Zhao | Jiaxu Miao | Wenqiao Zhang | Shiliang Pu | Fei Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Abductive Reasoning, has long been considered to be at the core ability of humans, which enables us to infer the most plausible explanation of incomplete known phenomena in daily life. However, such critical reasoning capability is rarely investigated for contemporary AI systems under such limited observations. To facilitate this research community, this paper sheds new light on Abductive Reasoning by studying a new vision-language task, Multi-modal Action chain abductive Reasoning (MAR), together with a large-scale Abductive Reasoning dataset: Given an incomplete set of language described events, MAR aims to imagine the most plausible event by spatio-temporal grounding in past video and then infer the hypothesis of subsequent action chain that can best explain the language premise. To solve this task, we propose a strong baseline model that realizes MAR from two perspectives: (i) we first introduce the transformer, which learns to encode the observation to imagine the plausible event with explicitly interpretable event grounding in the video based on the commonsense knowledge recognition ability. (ii) To complete the assumption of a follow-up action chain, we design a novel symbolic module that can complete strict derivation of the progressive action chain layer by layer. We conducted extensive experiments on the proposed dataset, and the experimental study shows that the proposed model significantly outperforms existing video-language models in terms of effectiveness on our newly created MAR dataset.

pdf bib
ART: rule bAsed futuRe-inference deducTion
Mengze Li | Tianqi Zhao | Bai Jionghao | Baoyi He | Jiaxu Miao | Wei Ji | Zheqi Lv | Zhou Zhao | Shengyu Zhang | Wenqiao Zhang | Fei Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Deductive reasoning is a crucial cognitive ability of humanity, allowing us to derive valid conclusions from premises and observations. However, existing works mainly focus on language-based premises and generally neglect deductive reasoning from visual observations. In this work, we introduce rule bAsed futuRe-inference deducTion (ART), which aims at deducing the correct future event based on the visual phenomenon (a video) and the rule-based premises, along with an explanation of the reasoning process. To advance this field, we construct a large-scale densely annotated dataset (Video-ART), where the premises, future event candidates, the reasoning process explanation, and auxiliary commonsense knowledge (e.g., actions and appearance) are annotated by annotators. Upon Video-ART, we develop a strong baseline named ARTNet. In essence, guided by commonsense knowledge, ARTNet learns to identify the target video character and perceives its visual clues related to the future event. Then, ARTNet rigorously applies the given premises to conduct reasoning from the identified information to future events, through a non-parametric rule reasoning network and a reasoning-path review module. Empirical studies validate the rationality of ARTNet in deductive reasoning upon visual observations and the effectiveness over existing works.

2022

pdf bib
End-to-End Modeling via Information Tree for One-Shot Natural Language Spatial Video Grounding
Mengze Li | Tianbao Wang | Haoyu Zhang | Shengyu Zhang | Zhou Zhao | Jiaxu Miao | Wenqiao Zhang | Wenming Tan | Jin Wang | Peng Wang | Shiliang Pu | Fei Wu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language spatial video grounding aims to detect the relevant objects in video frames with descriptive sentences as the query. In spite of the great advances, most existing methods rely on dense video frame annotations, which require a tremendous amount of human effort. To achieve effective grounding under a limited annotation budget, we investigate one-shot video grounding and learn to ground natural language in all video frames with solely one frame labeled, in an end-to-end manner. One major challenge of end-to-end one-shot video grounding is the existence of videos frames that are either irrelevant to the language query or the labeled frame. Another challenge relates to the limited supervision, which might result in ineffective representation learning. To address these challenges, we designed an end-to-end model via Information Tree for One-Shot video grounding (IT-OS). Its key module, the information tree, can eliminate the interference of irrelevant frames based on branch search and branch cropping techniques. In addition, several self-supervised tasks are proposed based on the information tree to improve the representation learning under insufficient labeling. Experiments on the benchmark dataset demonstrate the effectiveness of our model.