Menglong Lu


2025

pdf bib
LLM-based Rumor Detection via Influence Guided Sample Selection and Game-based Perspective Analysis
Zhiliang Tian | Jingyuan Huang | Zejiang He | Zhen Huang | Menglong Lu | Linbo Qiao | Songzhu Mei | Yijie Wang | Dongsheng Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Rumor detection on social media has become an emerging topic. Traditional deep learning-based methods model rumors based on content, propagation structure, or user behavior, but these approaches are constrained by limited modeling capacity and insufficient training corpora. Recent studies have explored using LLMs for rumor detection through supervised fine-tuning (SFT), but face two issues: 1) unreliable samples sometimes mislead the model learning; 2) the model only learns the most salient input-output mapping and skips in-depth analyses of the rumored content for convenience. To address these issues, we propose an SFT-based LLM rumor detection model with Influence guided Sample selection and Game-based multi-perspective Analysis (ISGA). Specifically, we first introduce the Influence Score (IS) to assess the impact of samples on model predictions and select samples for SFT. We also approximate IS via Taylor expansion to reduce computational complexity. Next, we use LLMs to generate in-depth analyses of news content from multiple perspectives and model their collaborative process for prediction as a cooperative game. Then we utilize the Shapley value to quantify the contribution of each perspective for selecting informative perspective analyses. Experiments show that ISGA excels existing SOTA on three datasets.

pdf bib
MONTROSE: LLM-driven Monte Carlo Tree Search Self-Refinement for Cross-Domain Rumor Detection
Shanshan Liu | Menglong Lu | Zhen Huang | Zejiang He | Liu Liu | Zhigang Sun | Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025

With the emergence of new topics on social media as sources of rumor dissemination, addressing the distribution shifts between source and target domains remains a crucial task in cross-domain rumor detection. Existing feature alignment methods, which aim to reduce the discrepancies between domains, are often susceptible to task interference during training. Additionally, data distribution alignment methods, which rely on existing data to synthesize new training samples, inherently introduce noise. To deal with these challenges, a new cross-domain rumor detection method, MONTROSE, is proposed. It combines LLM-driven Monte Carlo Tree Search (MCTS) data synthesis to generate high-quality synthetic data for the target domain and a domain-sharpness-aware (DSAM) self-refinement approach to train rumor detection models with these synthetic data effectively. Experiments demonstrate the superior performance of MONTROSE in cross-domain rumor detection.

2023

pdf bib
DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation
Menglong Lu | Zhen Huang | Yunxiang Zhao | Zhiliang Tian | Yang Liu | Dongsheng Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Self-training emerges as an important research line on domain adaptation. By taking the model’s prediction as the pseudo labels of the unlabeled data, self-training bootstraps the model with pseudo instances in the target domain. However, the prediction errors of pseudo labels (label noise) challenge the performance of self-training. To address this problem, previous approaches only use reliable pseudo instances, i.e., pseudo instances with high prediction confidence, to retrain the model. Although these strategies effectively reduce the label noise, they are prone to miss the hard examples. In this paper, we propose a new self-training framework for domain adaptation, namely Domain adversarial learning enhanced Self-Training Framework (DaMSTF). Firstly, DaMSTF involves meta-learning to estimate the importance of each pseudo instance, so as to simultaneously reduce the label noise and preserve hard examples. Secondly, we design a meta constructor for constructing the meta-validation set, which guarantees the effectiveness of the meta-learning module by improving the quality of the meta-validation set. Thirdly, we find that the meta-learning module suffers from the training guidance vanish- ment and tends to converge to an inferior optimal. To this end, we employ domain adversarial learning as a heuristic neural network initialization method, which can help the meta-learning module converge to a better optimal. Theoretically and experimentally, we demonstrate the effectiveness of the proposed DaMSTF. On the cross-domain sentiment classification task, DaMSTF improves the performance of BERT with an average of nearly 4%.

2022

pdf bib
Social Bot-Aware Graph Neural Network for Early Rumor Detection
Zhen Huang | Zhilong Lv | Xiaoyun Han | Binyang Li | Menglong Lu | Dongsheng Li
Proceedings of the 29th International Conference on Computational Linguistics

Early rumor detection is a key challenging task to prevent rumors from spreading widely. Sociological research shows that social bots’ behavior in the early stage has become the main reason for rumors’ wide spread. However, current models do not explicitly distinguish genuine users from social bots, and their failure in identifying rumors timely. Therefore, this paper aims at early rumor detection by accounting for social bots’ behavior, and presents a Social Bot-Aware Graph Neural Network, named SBAG. SBAG firstly pre-trains a multi-layer perception network to capture social bot features, and then constructs multiple graph neural networks by embedding the features to model the early propagation of posts, which is further used to detect rumors. Extensive experiments on three benchmark datasets show that SBAG achieves significant improvements against the baselines and also identifies rumors within 3 hours while maintaining more than 90% accuracy.