2025
pdf
bib
abs
Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation
Yuxuan Zhou
|
Margret Keuper
|
Mario Fritz
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Sampling-based decoding strategies have been widely adopted for Large Language Models (LLMs) in numerous applications, targeting a balance between diversity and quality via temperature tuning and tail truncation. Considering the strong dependency of the candidate next tokens on different prefixes, recent studies propose to adaptively truncate the tail of LLMs’ predicted distribution. Although improved results have been reported with these methods on open-ended text generation tasks, the results are highly dependent on the curated parameters and the limited exemplar text. In this paper, we propose a systematic way to estimate the intrinsic capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step, based on our collected prefix tree which preserves the context of a full sentence. Our work offers a comprehensive comparison of existing truncation sampling methods and serves as a practical user guideline for their parameter selection. Our code is available at https://anonymous.4open.science/r/Truncation-Sampling-Evaluation-251F.
pdf
bib
abs
A Theory of Response Sampling in LLMs: Part Descriptive and Part Prescriptive
Sarath Sivaprasad
|
Pramod Kaushik
|
Sahar Abdelnabi
|
Mario Fritz
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs’ outputs can result in significantly biased decision-making, raising ethical concerns.
pdf
bib
abs
CausalGraph2LLM: Evaluating LLMs for Causal Queries
Ivaxi Sheth
|
Bahare Fatemi
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2025
Causality is essential in scientific research, enabling researchers to interpret true relationships between variables. These causal relationships are often represented by causal graphs, which are directed acyclic graphs. With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning and their potential use to hypothesize causal graphs. These tasks necessitate the LLMs to encode the causal graph effectively for subsequent downstream tasks. In this paper, we introduce CausalGraph2LLM, a comprehensive benchmark comprising over 700k queries across diverse causal graph settings to evaluate the causal reasoning capabilities of LLMs. We categorize the causal queries into two types: graph-level and node-level queries. We benchmark both open-sourced and closed models for our study. Our findings reveal that while LLMs show promise in this domain, they are highly sensitive to the encoding used. Even capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with deviations of about 60%. We further demonstrate this sensitivity for downstream causal intervention tasks. Moreover, we observe that LLMs can often display biases when presented with contextual information about a causal graph, potentially stemming from their parametric memory.
2024
pdf
bib
abs
LLM Task Interference: An Initial Study on the Impact of Task-Switch in Conversational History
Akash Gupta
|
Ivaxi Sheth
|
Vyas Raina
|
Mark Gales
|
Mario Fritz
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
With the recent emergence of powerful instruction-tuned large language models (LLMs), various helpful conversational Artificial Intelligence (AI) systems have been deployed across many applications. When prompted by users, these AI systems successfully perform a wide range of tasks as part of a conversation. To provide some sort of memory and context, such approaches typically condition their output on the entire conversational history. Although this sensitivity to the conversational history can often lead to improved performance on subsequent tasks, we find that performance can in fact also be negatively impacted, if there is a _task-switch_. To the best of our knowledge, our work makes the first attempt to formalize the study of such vulnerabilities and interference of tasks in conversational LLMs caused by task-switches in the conversational history. Our experiments across 5 datasets with 15 task switches using popular LLMs reveal that many of the task-switches can lead to significant performance degradation.
pdf
bib
abs
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in Fine-tuned Source Code Models
Hossein Hajipour
|
Ning Yu
|
Cristian-Alexandru Staicu
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024
Large code datasets have become increasingly accessible for pre-training source code models. However, for the fine-tuning phase, obtaining representative training data that fully covers the code distribution for specific downstream tasks remains challenging due to the task-specific nature and limited labeling resources. These lead to out-of-distribution (OOD) generalization issues with unexpected model inference behaviors that have not been systematically studied yet.In this paper, we contribute the first systematic approach that simulates various OOD scenarios along different dimensions of source code data properties and study the fine-tuned model behaviors in such scenarios. We investigate the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods. Our comprehensive analysis, conducted on four state-of-the-art pretrained models and applied to two code generation tasks, exposes multiple failure modes attributed to OOD generalization issues.
pdf
bib
PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics
Derui Zhu
|
Dingfan Chen
|
Qing Li
|
Zongxiong Chen
|
Lei Ma
|
Jens Grossklags
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024