This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Minh QuangPham
SYSTRAN
Also published as:
Minh-Quang Pham,
MinhQuang Pham
Multilingual neural machine translation (MNMT) offers the convenience of translating between multiple languages with a single model. However, MNMT often suffers from performance degradation in high-resource languages compared to bilingual counterparts. This degradation is commonly attributed to parameter interference, which occurs when parameters are fully shared across all language pairs. In this work, to tackle this issue we propose a gradient-based gradual pruning technique for MNMT. Our approach aims to identify an optimal sub-network for each language pair within the multilingual model by leveraging gradient-based information as pruning criterion and gradually increasing the pruning ratio as schedule. Our approach allows for partial parameter sharing across language pairs to alleviate interference, and each pair preserves its unique parameters to capture language-specific information. Comprehensive experiments on IWSLT and WMT datasets show that our approach yields a notable performance gain on both datasets.
Large language models (LLMs) like ChatGPT can be expensive to train, deploy, and use for specific natural language generation tasks such as text summarization and for certain domains. A promising alternative is to fine-tune relatively smaller language models (LMs) on a particular task using high-quality, in-domain datasets. However, it can be prohibitively expensive to get such high-quality training data. This issue has been mitigated by generating weakly supervised data via knowledge distillation (KD) of LLMs. We propose a three-step approach to distill ChatGPT and fine-tune smaller LMs for summarizing forum conversations. More specifically, we design a method to selectively sample a large unannotated corpus of forum conversation using a semantic similarity metric. Then, we use the same metric to retrieve suitable prompts for ChatGPT from a small annotated validation set in the same domain. The generated dataset is then filtered to remove low-quality instances. Our proposed select-prompt-filter KD approach leads to significant improvements of up to 6.6 ROUGE-2 score by leveraging sufficient in-domain pseudo-labeled data over a standard KD approach given the same size of training data.
Multidomain and multilingual machine translation often rely on parameter sharing strategies, where large portions of the network are meant to capture the commonalities of the tasks at hand, while smaller parts are reserved to model the peculiarities of a language or a domain. In adapter-based approaches, these strategies are hardcoded in the network architecture, independent of the similarities between tasks. In this work, we propose a new method to better take advantage of these similarities, using a latent-variable model. We also develop new techniques to train this model end-to-end and report experimental results showing that the learned patterns are both meaningful and yield improved translation performance without any increase of the model size.
Building effective Neural Machine Translation models often implies accommodating diverse sets of heterogeneous data so as to optimize performance for the domain(s) of interest. Such multi-source / multi-domain adaptation problems are typically approached through instance selection or reweighting strategies, based on a static assessment of the relevance of training instances with respect to the task at hand. In this paper, we study dynamic data selection strategies that are able to automatically re-evaluate the usefulness of data samples and to evolve a data selection policy in the course of training. Based on the results of multiple experiments, we show that such methods constitute a generic framework to automatically and effectively handle a variety of real-world situations, from multi-source domain adaptation to multi-domain learning and unsupervised domain adaptation.
When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from unexpected domains in testing. This multi-domain scenario has attracted a lot of recent work that fall under the general umbrella of transfer learning. In this study, we revisit multi-domain machine translation, with the aim to formulate the motivations for developing such systems and the associated expectations with respect to performance. Our experiments with a large sample of multi-domain systems show that most of these expectations are hardly met and suggest that further work is needed to better analyze the current behaviour of multi-domain systems and to make them fully hold their promises.
This paper describes LISN’s submissions to two shared tasks at WMT’21. For the biomedical translation task, we have developed resource-heavy systems for the English-French language pair, using both out-of-domain and in-domain corpora. The target genre for this task (scientific abstracts) corresponds to texts that often have a standardized structure. Our systems attempt to take this structure into account using a hierarchical system of sentence-level tags. Translation systems were also prepared for the News task for the French-German language pair. The challenge was to perform unsupervised adaptation to the target domain (financial news). For this, we explored the potential of retrieval-based strategies, where sentences that are similar to test instances are used to prime the decoder.
This paper describes SYSTRAN submissions to the WMT 2021 terminology shared task. We participate in the English-to-French translation direction with a standard Transformer neural machine translation network that we enhance with the ability to dynamically include terminology constraints, a very common industrial practice. Two state-of-the-art terminology insertion methods are evaluated based (i) on the use of placeholders complemented with morphosyntactic annotation and (ii) on the use of target constraints injected in the source stream. Results show the suitability of the presented approaches in the evaluated scenario where terminology is used in a system trained on generic data only.
Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources.
Domain adaptation is an old and vexing problem for machine translation systems. The most common approach and successful to supervised adaptation is to fine-tune a baseline system with in-domain parallel data. Standard fine-tuning however modifies all the network parameters, which makes this approach computationally costly and prone to overfitting. A recent, lightweight approach, instead augments a baseline model with supplementary (small) adapter layers, keeping the rest of the mode unchanged. This has the additional merit to leave the baseline model intact, and adaptable to multiple domains. In this paper, we conduct a thorough analysis of the adapter model in the context of a multidomain machine translation task. We contrast multiple implementations of this idea on two language pairs. Our main conclusions are that residual adapters provide a fast and cheap method for supervised multi-domain adaptation; our two variants prove as effective as the original adapter model, and open perspective to also make adapted models more robust to label domain errors.
This paper describes LIMSI’s submissions to the translation shared tasks at WMT’20. This year we have focused our efforts on the biomedical translation task, developing a resource-heavy system for the translation of medical abstracts from English into French, using back-translated texts, terminological resources as well as multiple pre-processing pipelines, including pre-trained representations. Systems were also prepared for the robustness task for translating from English into German; for this large-scale task we developed multi-domain, noise-robust, translation systems aim to handle the two test conditions: zero-shot and few-shot domain adaptation.
This paper describes Systran’s submissions to WAT 2019 Russian-Japanese News Commentary task. A challenging translation task due to the extremely low resources available and the distance of the language pair. We have used the neural Transformer architecture learned over the provided resources and we carried out synthetic data generation experiments which aim at alleviating the data scarcity problem. Results indicate the suitability of the data augmentation experiments, enabling our systems to rank first according to automatic evaluations.
Supervised machine translation works well when the train and test data are sampled from the same distribution. When this is not the case, adaptation techniques help ensure that the knowledge learned from out-of-domain texts generalises to in-domain sentences. We study here a related setting, multi-domain adaptation, where the number of domains is potentially large and adapting separately to each domain would waste training resources. Our proposal transposes to neural machine translation the feature expansion technique of (Daumé III, 2007): it isolates domain-agnostic from domain-specific lexical representations, while sharing the most of the network across domains. Our experiments use two architectures and two language pairs: they show that our approach, while simple and computationally inexpensive, outperforms several strong baselines and delivers a multi-domain system that successfully translates texts from diverse sources.
SYSTRAN competes this year for the first time to the DSL shared task, in the Arabic Dialect Identification subtask. We participate by training several Neural Network models showing that we can obtain competitive results despite the limited amount of training data available for learning. We report our experiments and detail the network architecture and parameters of our 3 runs: our best performing system consists in a Multi-Input CNN that learns separate embeddings for lexical, phonetic and acoustic input features (F1: 0.5289); we also built a CNN-biLSTM network aimed at capturing both spatial and sequential features directly from speech spectrograms (F1: 0.3894 at submission time, F1: 0.4235 with later found parameters); and finally a system relying on binary CNN-biLSTMs (F1: 0.4339).
This paper describes the participation of SYSTRAN to the shared task on parallel corpus filtering at the Third Conference on Machine Translation (WMT 2018). We participate for the first time using a neural sentence similarity classifier which aims at predicting the relatedness of sentence pairs in a multilingual context. The paper describes the main characteristics of our approach and discusses the results obtained on the data sets published for the shared task.
Corpus-based approaches to machine translation rely on the availability of clean parallel corpora. Such resources are scarce, and because of the automatic processes involved in their preparation, they are often noisy. This paper describes an unsupervised method for detecting translation divergences in parallel sentences. We rely on a neural network that computes cross-lingual sentence similarity scores, which are then used to effectively filter out divergent translations. Furthermore, similarity scores predicted by the network are used to identify and fix some partial divergences, yielding additional parallel segments. We evaluate these methods for English-French and English-German machine translation tasks, and show that using filtered/corrected corpora actually improves MT performance.