Ming Zhang


2024

pdf
TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
Ming Zhang | Caishuang Huang | Yilong Wu | Shichun Liu | Huiyuan Zheng | Yurui Dong | Yujiong Shen | Shihan Dou | Jun Zhao | Junjie Ye | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, **TransferTOD**, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model using full-parameter fine-tuning called **TransferTOD-7B**, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.

pdf
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning Through Trap Problems
Jun Zhao | Jingqi Tong | Yurong Mou | Ming Zhang | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent “unseen” cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. We find that LLMs’ performance can be improved through the above external intervention. Overall, systematic compositionality remains an open challenge for large language models.

pdf
Measuring Social Norms of Large Language Models
Ye Yuan | Kexin Tang | Jianhao Shen | Ming Zhang | Chenguang Wang
Findings of the Association for Computational Linguistics: NAACL 2024

We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models’ ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements.

pdf
Multi-modal Semantic Understanding with Contrastive Cross-modal Feature Alignment
Ming Zhang | Ke Chang | Yunfang Wu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-modal semantic understanding requires integrating information from different modalities to extract users’ real intention behind words. Most previous work applies a dual-encoder structure to separately encode image and text, but fails to learn cross-modal feature alignment, making it hard to achieve cross-modal deep information interaction. This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment, which projects the features derived from different modalities into a unified deep space. On multi-modal sarcasm detection (MMSD) and multi-modal sentiment analysis (MMSA) tasks, the experimental results show that our proposed model significantly outperforms several baselines, and our feature alignment strategy brings obvious performance gain over models with different aggregating methods and models even enriched with knowledge. More importantly, our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks. Our source codes are available at https://github.com/ChangKe123/CLFA.

2023

pdf
MolXPT: Wrapping Molecules with Text for Generative Pre-training
Zequn Liu | Wei Zhang | Yingce Xia | Lijun Wu | Shufang Xie | Tao Qin | Ming Zhang | Tie-Yan Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generative pre-trained Transformer (GPT) has demonstrates its great success in natural language processing and related techniques have been adapted into molecular modeling. Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text. Briefly, we detect the molecule names in each sequence and replace them to the corresponding SMILES. In this way, the SMILES could leverage the information from surrounding text, and vice versa. The above wrapped sequences, text sequences from PubMed and SMILES sequences from PubChem are all fed into a language model for pre-training. Experimental results demonstrate that MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet, performs comparably to the best model in text-molecule translation while using less than half of its parameters, and enables zero-shot molecular generation without finetuning.

pdf
TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative Language Models
Jing Xiong | Jianhao Shen | Ye Yuan | Haiming Wang | Yichun Yin | Zhengying Liu | Lin Li | Zhijiang Guo | Qingxing Cao | Yinya Huang | Chuanyang Zheng | Xiaodan Liang | Ming Zhang | Qun Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.

2022

pdf
MetaFill: Text Infilling for Meta-Path Generation on Heterogeneous Information Networks
Zequn Liu | Kefei Duan | Junwei Yang | Hanwen Xu | Ming Zhang | Sheng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Heterogeneous information network (HIN) is essential to study complicated networks containing multiple edge types and node types. Meta-path, a sequence of node types and edge types, is the core technique to embed HINs. Since manually curating meta-paths is time-consuming, there is a pressing need to develop automated meta-path generation approaches. Existing meta-path generation approaches cannot fully exploit the rich textual information in HINs, such as node names and edge type names. To address this problem, we propose MetaFill, a text-infilling-based approach for meta-path generation. The key idea of MetaFill is to formulate meta-path identification problem as a word sequence infilling problem, which can be advanced by pretrained language models (PLMs). We observed the superior performance of MetaFill against existing meta-path generation methods and graph embedding methods that do not leverage meta-paths in both link prediction and node classification on two real-world HIN datasets. We further demonstrated how MetaFill can accurately classify edges in the zero-shot setting, where existing approaches cannot generate any meta-paths. MetaFill exploits PLMs to generate meta-paths for graph embedding, opening up new avenues for language model applications in graph analysis.

pdf
Pathway2Text: Dataset and Method for Biomedical Pathway Description Generation
Junwei Yang | Zequn Liu | Ming Zhang | Sheng Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Biomedical pathways have been extensively used to characterize the mechanism of complex diseases. One essential step in biomedical pathway analysis is to curate the description of a pathway based on its graph structure and node features. Neural text generation could be a plausible technique to circumvent the tedious manual curation. In this paper, we propose a new dataset Pathway2Text, which contains 2,367 pairs of biomedical pathways and textual descriptions. All pathway graphs are experimentally derived or manually curated. All textual descriptions are written by domain experts. We form this problem as a Graph2Text task and propose a novel graph-based text generation approach kNN-Graph2Text, which explicitly exploited descriptions of similar graphs to generate new descriptions. We observed substantial improvement of our method on both Graph2Text and the reverse task of Text2Graph. We further illustrated how our dataset can be used as a novel benchmark for biomedical named entity recognition. Collectively, we envision our method will become an important benchmark for evaluating Graph2Text methods and advance biomedical research for complex diseases.

pdf
PALT: Parameter-Lite Transfer of Language Models for Knowledge Graph Completion
Jianhao Shen | Chenguang Wang | Ye Yuan | Jiawei Han | Heng Ji | Koushik Sen | Ming Zhang | Dawn Song
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper presents a parameter-lite transfer learning approach of pretrained language models (LM) for knowledge graph (KG) completion. Instead of finetuning, which modifies all LM parameters, we only tune a few new parameters while keeping the original LM parameters fixed. We establish this via reformulating KG completion as a “fill-in-the-blank” task, and introducing a parameter-lite encoder on top of the original LMs. We show that, by tuning far fewer parameters than finetuning, LMs transfer non-trivially to most tasks and reach competitiveness with prior state-of-the-art approaches. For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters.

pdf
Focus-Driven Contrastive Learning for Medical Question Summarization
Ming Zhang | Shuai Dou | Ziyang Wang | Yunfang Wu
Proceedings of the 29th International Conference on Computational Linguistics

Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers. The Seq2Seq model based on maximum likelihood estimation (MLE) has been applied in this task, which faces two general problems: the model can not capture well question focus and and the traditional MLE strategy lacks the ability to understand sentence-level semantics. To alleviate these problems, we propose a novel question focus-driven contrastive learning framework (QFCL). Specially, we propose an easy and effective approach to generate hard negative samples based on the question focus, and exploit contrastive learning at both encoder and decoder to obtain better sentence level representations. On three medical benchmark datasets, our proposed model achieves new state-of-the-art results, and obtains a performance gain of 5.33, 12.85 and 3.81 points over the baseline BART model on three datasets respectively. Further human judgement and detailed analysis prove that our QFCL model learns better sentence representations with the ability to distinguish different sentence meanings, and generates high-quality summaries by capturing question focus.

2021

pdf bib
Expanding the JHU Bible Corpus for Machine Translation of the Indigenous Languages of North America
Garrett Nicolai | Edith Coates | Ming Zhang | Miikka Silfverberg
Proceedings of the 4th Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers)

pdf
Generate & Rank: A Multi-task Framework for Math Word Problems
Jianhao Shen | Yichun Yin | Lin Li | Lifeng Shang | Xin Jiang | Ming Zhang | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% to 85.4%) higher than the state-of-the-art. Code could be found at https://github.com/huawei-noah/noah-research.

pdf
Graphine: A Dataset for Graph-aware Terminology Definition Generation
Zequn Liu | Shukai Wang | Yiyang Gu | Ruiyi Zhang | Ming Zhang | Sheng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Precisely defining the terminology is the first step in scientific communication. Developing neural text generation models for definition generation can circumvent the labor-intensity curation, further accelerating scientific discovery. Unfortunately, the lack of large-scale terminology definition dataset hinders the process toward definition generation. In this paper, we present a large-scale terminology definition dataset Graphine covering 2,010,648 terminology definition pairs, spanning 227 biomedical subdisciplines. Terminologies in each subdiscipline further form a directed acyclic graph, opening up new avenues for developing graph-aware text generation models. We then proposed a novel graph-aware definition generation model Graphex that integrates transformer with graph neural network. Our model outperforms existing text generation models by exploiting the graph structure of terminologies. We further demonstrated how Graphine can be used to evaluate pretrained language models, compare graph representation learning methods and predict sentence granularity. We envision Graphine to be a unique resource for definition generation and many other NLP tasks in biomedicine.

pdf
UniKER: A Unified Framework for Combining Embedding and Definite Horn Rule Reasoning for Knowledge Graph Inference
Kewei Cheng | Ziqing Yang | Ming Zhang | Yizhou Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graph inference has been studied extensively due to its wide applications. It has been addressed by two lines of research, i.e., the more traditional logical rule reasoning and the more recent knowledge graph embedding (KGE). Several attempts have been made to combine KGE and logical rules for better knowledge graph inference. Unfortunately, they either simply treat logical rules as additional constraints into KGE loss or use probabilistic model to approximate the exact logical inference (i.e., MAX-SAT). Even worse, both approaches need to sample ground rules to tackle the scalability issue, as the total number of ground rules is intractable in practice, making them less effective in handling logical rules. In this paper, we propose a novel framework UniKER to address these challenges by restricting logical rules to be definite Horn rules, which can fully exploit the knowledge in logical rules and enable the mutual enhancement of logical rule-based reasoning and KGE in an extremely efficient way. Extensive experiments have demonstrated that our approach is superior to existing state-of-the-art algorithms in terms of both efficiency and effectiveness.

2020

pdf
PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction
Yichun Yin | Chenguang Wang | Ming Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.

pdf
Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks
Yiping Song | Zequn Liu | Wei Bi | Rui Yan | Ming Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.

2017

pdf
NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: a Simple Ensemble Method with Different Embeddings
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

Recently, neural twitter sentiment classification has become one of state-of-thearts, which relies less feature engineering work compared with traditional methods. In this paper, we propose a simple and effective ensemble method to further boost the performances of neural models. We collect several word embedding sets which are publicly released (often are learned on different corpus) or constructed by running Skip-gram on released large-scale corpus. We make an assumption that different word embeddings cover different words and encode different semantic knowledge, thus using them together can improve the generalizations and performances of neural models. In the SemEval 2017, our method ranks 1st in Accuracy, 5th in AverageR. Meanwhile, the additional comparisons demonstrate the superiority of our model over these ones based on only one word embedding set. We release our code for the method duplicability.

pdf
Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song | Zhiliang Tian | Dongyan Zhao | Ming Zhang | Rui Yan
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.

pdf
Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Document-level multi-aspect sentiment classification is an important task for customer relation management. In this paper, we model the task as a machine comprehension problem where pseudo question-answer pairs are constructed by a small number of aspect-related keywords and aspect ratings. A hierarchical iterative attention model is introduced to build aspectspecific representations by frequent and repeated interactions between documents and aspect questions. We adopt a hierarchical architecture to represent both word level and sentence level information, and use the attention operations for aspect questions and documents alternatively with the multiple hop mechanism. Experimental results on the TripAdvisor and BeerAdvocate datasets show that our model outperforms classical baselines. We will release our code and data for the method replicability.

pdf
Syntax Aware LSTM model for Semantic Role Labeling
Feng Qian | Lei Sha | Baobao Chang | Lu-chen Liu | Ming Zhang
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing

In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an architecture engineering way. Experiments demonstrate that on Chinese Proposition Bank (CPB) 1.0, SA-LSTM improves F1 by 2.06% than ordinary bi-LSTM with feature engineered dependency relation information, and gives state-of-the-art F1 of 79.92%. On English CoNLL 2005 dataset, SA-LSTM brings improvement (2.1%) to bi-LSTM model and also brings slight improvement (0.3%) when added to the state-of-the-art model.

2016

pdf
Chinese Couplet Generation with Neural Network Structures
Rui Yan | Cheng-Te Li | Xiaohua Hu | Ming Zhang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf
Paraphrasing Adaptation for Web Search Ranking
Chenguang Wang | Nan Duan | Ming Zhou | Ming Zhang
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2011

pdf
A Fast and Accurate Method for Approximate String Search
Ziqi Wang | Gu Xu | Hang Li | Ming Zhang
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies