Martina Galletti


2025

pdf bib
From End-Users to Co-Designers: Lessons from Teachers
Martina Galletti | Valeria Cesaroni
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025)

This study presents a teacher-centered evaluation of an AI-powered reading comprehension tool, developed to support learners with language-based difficulties. Drawing on the Social Acceptance of Technology (SAT) framework, we investigate not only technical usability but also the pedagogical, ethical, and contextual dimensions of AI integration in classrooms. We explore how teachers perceive the platform’s alignment with inclusive pedagogies, instructional workflows, and professional values through a mixed-methods approach, including questionnaires and focus groups with educators. Findings a shift from initial curiosity to critical, practice-informed reflection, with trust, transparency, and adaptability emerging as central concerns. The study contributes a replicable evaluation framework and highlights the importance of engaging teachers as co-designers in the development of educational technologies.

pdf bib
Are Your Keywords Like My Queries? A Corpus-Wide Evaluation of Keyword Extractors with Real Searches
Martina Galletti | Giulio Prevedello | Emanuele Brugnoli | Donald Ruggiero Lo Sardo | Pietro Gravino
Proceedings of the 31st International Conference on Computational Linguistics

Keyword Extraction (KE) is essential in Natural Language Processing (NLP) for identifying key terms that represent the main themes of a text, and it is vital for applications such as information retrieval, text summarisation, and document classification. Despite the development of various KE methods — including statistical approaches and advanced deep learning models — evaluating their effectiveness remains challenging. Current evaluation metrics focus on keyword quality, balance, and overlap with annotations from authors and professional indexers, but neglect real-world information retrieval needs. This paper introduces a novel evaluation method designed to overcome this limitation by using real query data from Google Trends and can be used with both supervised and unsupervised KE approaches. We applied this method to three popular KE approaches (YAKE, RAKE and KeyBERT) and found that KeyBERT was the most effective in capturing users’ top queries, with RAKE also showing surprisingly good performance. The code is open-access and publicly available.

2024

pdf bib
Automatic Text Simplification: A Comparative Study in Italian for Children with Language Disorders
Francesca Padovani | Caterina Marchesi | Eleonora Pasqua | Martina Galletti | Daniele Nardi
Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning