2025
pdf
bib
abs
Harnessing NLP for Indigenous Language Education: Fine-Tuning Large Language Models for Sentence Transformation
Mahshar Yahan
|
Dr. Mohammad Islam
Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP)
Indigenous languages face significant challenges due to their endangered status and limited resources which makes their integration into NLP systems difficult. This study investigates the use of Large Language Models (LLMs) for sentence transformation tasks in Indigenous languages, focusing on Bribri, Guarani, and Maya. Here, the dataset from the AmericasNLP 2025 Shared Task 2 is used to explore sentence transformations in Indigenous languages. The goal is to create educational tools by modifying sentences based on linguistic instructions, such as changes in tense, aspect, voice, person, and other grammatical features. The methodology involves preprocessing data, simplifying transformation tags, and designing zero-shot and few-shot prompts to guide LLMs in sentence rewriting. Fine-tuning techniques like LoRA and Bits-and-Bytes quantization were employed to optimize model performance while reducing computational costs. Among the tested models, Llama 3.2(3B-Instruct) demonstrated superior performance across all languages with high BLEU and ChrF++ scores, particularly excelling in few-shot settings. The Llama 3.2 model achieved BLEU scores of 19.51 for Bribri, 13.67 for Guarani, and 55.86 for Maya in test settings. Additionally, ChrF++ scores reached 50.29 for Bribri, 58.55 for Guarani, and 80.12 for Maya, showcasing its effectiveness in handling sentence transformation. These results highlight the potential of LLMs that can improve NLP tools for indigenous languages and help preserve linguistic diversity.
pdf
bib
abs
Leveraging Large Language Models for Spanish-Indigenous Language Machine Translation at AmericasNLP 2025
Mahshar Yahan
|
Dr. Mohammad Islam
Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP)
This paper presents our approach to machine translation between Spanish and 13 Indigenous languages of the Americas as part of the AmericasNLP 2025 shared task. Addressing the challenges of low-resource translation, we fine-tuned advanced multilingual models, including NLLB-200 (Distilled-600M), Llama 3.1 (8B-Instruct) and XGLM 1.7B, using techniques such as dynamic batching, token adjustments, and embedding initialization. Data preprocessing steps like punctuation removal and tokenization refinements were employed to achieve data generalization. While our models demonstrated strong performance for Awajun and Quechua translations, they struggled with morphologically complex languages like Nahuatl and Otomí. Our approach achieved competitive ChrF++ scores for Awajun (35.16) and Quechua (31.01) in the Spanish-to-Indigenous translation track (Es→Xx). Similarly, in the Indigenous-to-Spanish track (Xx→Es), we obtained ChrF++ scores of 33.70 for Awajun and 31.71 for Quechua. These results underscore the potential of tailored methodologies in preserving linguistic diversity while advancing machine translation for endangered languages.
2024
pdf
bib
abs
Golden_Duck at #SMM4H 2024: A Transformer-based Approach to Social Media Text Classification
Md Ayon Mia
|
Mahshar Yahan
|
Hasan Murad
|
Muhammad Khan
Proceedings of the 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
In this paper, we have addressed Task 3 on social anxiety disorder identification and Task 5 on mental illness recognition organized by the SMM4H 2024 workshop. In Task 3, a multi-classification problem has been presented to classify Reddit posts about outdoor spaces into four categories: Positive, Neutral, Negative, or Unrelated. Using the pre-trained RoBERTa-base model along with techniques like Mean pooling, CLS, and Attention Head, we have scored an F1-Score of 0.596 on the test dataset for Task 3. Task 5 aims to classify tweets into two categories: those describing a child with conditions like ADHD, ASD, delayed speech, or asthma (class 1), and those merely mentioning a disorder (class 0). Using the pre-trained RoBERTa-large model, incorporating a weighted ensemble of the last 4 hidden layers through concatenation and mean pooling, we achieved an F1 Score of 0.928 on the test data for Task 5.
2023
pdf
bib
abs
EmptyMind at BLP-2023 Task 1: A Transformer-based Hierarchical-BERT Model for Bangla Violence-Inciting Text Detection
Udoy Das
|
Karnis Fatema
|
Md Ayon Mia
|
Mahshar Yahan
|
Md Sajidul Mowla
|
Md Fayez Ullah
|
Arpita Sarker
|
Hasan Murad
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
The availability of the internet has made it easier for people to share information via social media. People with ill intent can use this widespread availability of the internet to share violent content easily. A significant portion of social media users prefer using their regional language which makes it quite difficult to detect violence-inciting text. The objective of our research work is to detect Bangla violence-inciting text from social media content. A shared task on Bangla violence-inciting text detection has been organized by the First Bangla Language Processing Workshop (BLP) co-located with EMNLP, where the organizer has provided a dataset named VITD with three categories: nonviolence, passive violence, and direct violence text. To accomplish this task, we have implemented three machine learning models (RF, SVM, XGBoost), two deep learning models (LSTM, BiLSTM), and two transformer-based models (BanglaBERT, Hierarchical-BERT). We have conducted a comparative study among different models by training and evaluating each model on the VITD dataset. We have found that Hierarchical-BERT has provided the best result with an F1 score of 0.73797 on the test set and ranked 9th position among all participants in the shared task 1 of the BLP Workshop co-located with EMNLP 2023.
pdf
bib
abs
EmptyMind at BLP-2023 Task 2: Sentiment Analysis of Bangla Social Media Posts using Transformer-Based Models
Karnis Fatema
|
Udoy Das
|
Md Ayon Mia
|
Md Sajidul Mowla
|
Mahshar Yahan
|
Md Fayez Ullah
|
Arpita Sarker
|
Hasan Murad
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
With the popularity of social media platforms, people are sharing their individual thoughts by posting, commenting, and messaging with their friends, which generates a significant amount of digital text data every day. Conducting sentiment analysis of social media content is a vibrant research domain within the realm of Natural Language Processing (NLP), and it has practical, real-world uses. Numerous prior studies have focused on sentiment analysis for languages that have abundant linguistic resources, such as English. However, limited prior research works have been done for automatic sentiment analysis in low-resource languages like Bangla. In this research work, we are going to finetune different transformer-based models for Bangla sentiment analysis. To train and evaluate the model, we have utilized a dataset provided in a shared task organized by the BLP Workshop co-located with EMNLP-2023. Moreover, we have conducted a comparative study among different machine learning models, deep learning models, and transformer-based models for Bangla sentiment analysis. Our findings show that the BanglaBERT (Large) model has achieved the best result with a micro F1-Score of 0.7109 and secured 7th position in the shared task 2 leaderboard of the BLP Workshop in EMNLP 2023.