Mahmud Elahi Akhter


2025

pdf bib
Temporal reasoning for timeline summarisation in social media
Jiayu Song | Mahmud Elahi Akhter | Dana Atzil-Slonim | Maria Liakata
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper explores whether enhancing temporal reasoning capabilities in Large Language Models (LLMs) can improve the quality of timeline summarisation, the task of summarising long texts containing sequences of events, such as social media threads. We first introduce NarrativeReason, a novel dataset focused on temporal relationships among sequential events within narratives, distinguishing it from existing temporal reasoning datasets that primarily address pair-wise event relationships. Our approach then combines temporal reasoning with timeline summarisation through a knowledge distillation framework, where we first fine-tune a teacher model on temporal reasoning tasks and then distill this knowledge into a student model while simultaneously training it for the task of timeline summarisation. Experimental results demonstrate that our model achieves superior performance on out-of-domain mental health-related timeline summarisation tasks, which involve long social media threads with repetitions of events and a mix of emotions, highlighting the importance and generalisability of leveraging temporal reasoning to improve timeline summarisation.

pdf bib
Assessing the Reasoning Capabilities of LLMs in the context of Evidence-based Claim Verification
John Dougrez-Lewis | Mahmud Elahi Akhter | Federico Ruggeri | Sebastian Löbbers | Yulan He | Maria Liakata
Findings of the Association for Computational Linguistics: ACL 2025

Although LLMs have shown great performance on Mathematics and Coding related reasoning tasks, the reasoning capabilities of LLMs regarding other forms of reasoning are still an open problem. Here, we examine the issue of reasoning from the perspective of claim verification. We propose a framework designed to break down any claim paired with evidence into atomic reasoning types that are necessary for verification. We use this framework to create RECV, the first claim verification benchmark, incorporating real-world claims, to assess the deductive and abductive reasoning capabilities of LLMs. The benchmark comprises of three datasets, covering reasoning problems of in creasing complexity. We evaluate three state of-the-art proprietary LLMs under multiple prompt settings. Our results show that while LLMs can address deductive reasoning prob lems, they consistently fail in cases of abductive reasoning. Moreover, we observe that enhancing LLMs with rationale generation is not always beneficial. Nonetheless, we find that generated rationales are semantically similar to those provided by humans, especially in deduc tive reasoning cases.

2023

pdf bib
Does Transliteration Help Multilingual Language Modeling?
Ibraheem Muhammad Moosa | Mahmud Elahi Akhter | Ashfia Binte Habib
Findings of the Association for Computational Linguistics: EACL 2023

Script diversity presents a challenge to Multilingual Language Models (MLLM) by reducing lexical overlap among closely related languages. Therefore, transliterating closely related languages that use different writing scripts to a common script may improve the downstream task performance of MLLMs. We empirically measure the effect of transliteration on MLLMs in this context. We specifically focus on the Indic languages, which have the highest script diversity in the world, and we evaluate our models on the IndicGLUE benchmark. We perform the Mann-Whitney U test to rigorously verify whether the effect of transliteration is significant or not. We find that transliteration benefits the low-resource languages without negatively affecting the comparatively high-resource languages. We also measure the cross-lingual representation similarity of the models using centered kernel alignment on parallel sentences from the FLORES-101 dataset. We find that for parallel sentences across different languages, the transliteration-based model learns sentence representations that are more similar.